Biểu thức \(a\sqrt{b}+\sqrt{ab}+\sqrt{a}+1\)(a≥0, b≥0) được phân tích thành nhân tử là
Phân tích thành nhân tử biểu thức :
ab+\(b\sqrt{a}+\sqrt{a}+1\) với a≥0
\(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
a. Khử mẫu của biểu thức sau rồi rút gọn:-7xy.\(\sqrt{\dfrac{3}{xy}}\)với x,y<0
b. Phân tích thành nhân tử biểu thức: ab+b\(\sqrt{a}+\sqrt{a}+1\)(với a≥0)
a) Ta có: \(-7xy\cdot\sqrt{\dfrac{3}{xy}}\)
\(=\dfrac{-7xy\cdot\sqrt{3xy}}{xy}\)
\(=-7\sqrt{3}\cdot\sqrt{xy}\)
b) Ta có: \(ab+b\sqrt{a}+\sqrt{a}+1\)
\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
$a)-7xy.\sqrt{\dfrac{3}{xy}}$
$=-7.\sqrt{x^2y^2.\dfrac{3}{xy}}(do \,x,y>0a\to xy>0)$
$=-7.\sqrt{\dfrac{xy}{3}}$
$b)ab+b\sqrt{a}+\sqrt{a}+1(a \ge 0)$
$=b\sqrt{a}(\sqrt{a}+1)+\sqrt{a}+1$
$=(\sqrt{a}+1)(b\sqrt{a}+1)$
a. Khử mẫu của biểu thức sau rồi rút gọn: -7xy.\(\sqrt{\dfrac{3}{xy}}\)với x,y<0
b. Phân tích thành nhân tử biểu thức: ab+\(b\sqrt{a}+\sqrt{a}+1\)(với a≥0)
a) \(-7xy.\sqrt{\dfrac{3}{xy}}=-7xy.\dfrac{\sqrt{3xy}}{xy}=-7\sqrt{3xy}\)
b) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
a: \(-7xy\cdot\sqrt{\dfrac{3}{xy}}=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3xy}\)
b: \(ab+b\sqrt{a}+\sqrt{a}+1\)
\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
1. Phân tích đa thức thành nhân tử
\(a)\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}(a>0,b>0)\)
\(b)x-y+\sqrt{xy^2}-\sqrt{y^3}(x>0,y>0)\)
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)
Phân tích đa thức thành nhân tử:
a, \(3-\sqrt{3}+15-3\sqrt{5}\)
b,\(\sqrt{1-a}+\sqrt{1-a^2}\left(-1< a< 1\right)\)
c,\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\left(a>0,b>0\right)\)
d,\(x-y+\sqrt{y^2}-y^3\left(x,y>0\right)\)
Phân tích các đa thức sau thành nhân tử
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+2\sqrt{b}\right)\left(\sqrt{a}+1\right)\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
Cho biểu thức sau : A= \(\left(\sqrt{x}+3\right)^2\) - 4\(\sqrt{x}\) -6 ( với x ≥ 0 )
a) Rút gọn A
b) Phân tích A thành nhân từ
a) \(A=\left(\sqrt{x}+3\right)^2-4\sqrt{x}-6\)
\(A=x+6\sqrt{x}+9-4\sqrt{x}-6\)
\(A=x+2\sqrt{x}-3\)
b) \(A=x+2\sqrt{x}-3\)
\(A=x+3\sqrt{x}-\sqrt{x}-3\)
\(A=\sqrt{x}\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)\)
\(A=\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)\)
a: A=x+6căn x+9-4căn x-6
=x+2căn x+3
b: A ko phân tích được nha bạn
2.Phân tích đa thức thành nhân tử:
a) \(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}\)
b) \(\sqrt{1-a}+\sqrt{1-a^2}với\left(-1< a< 1\right)\)
c) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}với\left(a>0;b>0\right)\)
d) \(x-y+\sqrt{xy^2}-\sqrt{y^3}với\left(x>0;y>0\right)\)