Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 14:37

b: Xét tứ giác ADC'B' có

AD//B'C'

AD=B'C'

Do đó: ADC'B' là hình bình hành

=>AB'//DC'

=>AB'//(C'BD)(1)

Xét tứ giác BDD'B' có

BB'//DD'

BB'=D'D

Do đó: BDD'B' là hình bình hành

=>BD//B'D'

=>B'D'//(C'BD)(2)

Từ (1) và (2) suy ra (C'BD)//(AB'D')

a:

AA'//BB'

=>AA'//(BB'D'C'C)

Xét tứ giác ABC'D' có

AB//C'D'

AB=C'D'

Do đó: ABC'D' là hình bình hành

=>AD'//BC'

=>AD'//(BB'DC'C)

mà AA'//(BB'D'C'C)

và AA',AD' cùng thuộc mp(AA'D'D)

nên (AA'D'D)//(BB'DC'C)

Mai Quynhf Trần
Xem chi tiết
Vũ Lam Chi
Xem chi tiết
Vũ Lam Chi
7 tháng 2 2021 lúc 7:41

Please, ai giúp mk câu b,c,d với ạ 🥺🥺🥺

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 9 2017 lúc 10:30

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi G và G' lần lượt là trọng tâm các tam giác PQR và P'Q'R'.

Theo câu a) ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 G trùng với G'

Vậy hai tam giác PQR và P'Q'R' có cùng trọng tâm.

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
26 tháng 5 2017 lúc 14:31

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2018 lúc 12:43

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) + A’D’ // BC và A’D’ = BC

⇒ A’D’CB là hình bình hành

⇒ A’B // D’C, mà D’C ⊂ (B’D’C) ⇒ A’B // (B’D’C) (1)

+ BB’ // DD’ và BB’ = DD’

⇒ BDD’B’ là hình bình hành

⇒ BD // B’D’, mà B’D’ ⊂ (B’D’C) ⇒ BD // (B’D’C) (2)

A’B ⊂ (BDA’) và BD ⊂ (BDA’); A’B ∩ BD = B (3)

Từ (1), (2), (3) suy ra : (BDA’) // (B’D’C).

b) Gọi O = AC ∩ BD

+ Ta có: O ∈ AC ⊂ (AA’C’C)

⇒ A’O ⊂ (AA’C’C).

Trong (AA’C’C), gọi A’O ∩ AC’ = G1.

G1 ∈ A’O ⊂ (A’BD)

⇒ G1 ∈ AC’ ∩ (BDA’).

+ Trong hình bình hành AA’C’C gọi I = A’C ∩ AC’

⇒ A’I = IC.

⇒ AI là trung tuyến của ΔA’AC

⇒   G 1   =   A ’ O   ∩   A C ’ là giao của hai trung tuyến AI và A’O của ΔA’AC

⇒   G 1  là trọng tâm ΔA’AC

⇒   A ’ G 1   =   2 . A ’ O / 3

⇒   G 1  cũng là trọng tâm ΔA’BD.

Vậy AC' đi qua trọng tâm G 1  của ΔA’BD.

Chứng minh tương tự đối với điểm G 2 .

c) *Vì G 1  là trọng tâm của ΔAA’C nên A G 1 / A I   =   2 / 3 .

Vì I là trung điểm của AC’ nên AI = 1/2.AC’

Từ các kết quả này, ta có : A G 1   =   1 / 3 . A C ’

*Chứng minh tương tự ta có : C ’ G 2   =   1 / 3 . A C ’

Suy ra : A G 1   =   G 1 G 2   =   G 2 C ’   =   1 / 3 . A C ’ .

d) (A’IO) chính là mp (AA’C’C) nên thiết diện cần tìm chính là hình bình hành AA’C’C.

Sách Giáo Khoa
Xem chi tiết
Quang Duy
31 tháng 3 2017 lúc 18:19

Lời giải:

a) Tứ giác DBB'D' là hình bình hành nên  BD // B'D' . Vì vậy BD // (B'D'C) và BA' // CD' \(\Rightarrow\) BA' // ( B'D'C).

Từ đó suy ra ( BDA') //B'D'C).

b) Gọi {G_{1}}^{}, {G_{2}}^{} là giao điểm của AC' với A'O và CO'.
Do \(G_1=A'O\cap AI\) và A'O và AI là hai đường trung tuyến của tam giác nên \(G_1\) là trọng tâm của tam giác A'AC.
Chứng minh tương tự \(G_2\) là trọng tâm tam giác CAC'.
Suy ra \(\dfrac{AG_1}{AO}=\dfrac{2}{3}\)\(\dfrac{CG_2}{CO}=\dfrac{2}{3}\) nên đường chéo AC'  đi qua trọng tâm của hai tam giác BDA' và B'D'C.

c) Do O và O' lần lượt là trung điểm của AC và A'C' nên \(OC=A'O'\) và OC' // A'O'.
Vì vậy tứ giác OCO'A là hình bình hành và OA'//OC.
Từ đó ta chứng minh được \(G_1\) lần lượt là trung điểm của \(AG_1\) và \(G_2\) là trung điểm của \(G_1C'\).
Do đó: \(AG_1=G_1G_2=G_2C\) (đpcm).
d) \(\left(A'IO\right)=\left(AA'C'C\right)\). Nên thiết diện cần tìm là (AA'C'C).
 

Quang Duy
31 tháng 3 2017 lúc 18:20

d) (A'IO) ≡ (AA'C'C) suy ra thiết diện là AA'C'C

Nguyễn Lê Vy
Xem chi tiết
Nguyễn Lê Vy
Xem chi tiết