Thu gọn biểu thức Q= 3^1 + 3^2 + 3^3 + … + 3^200
Rút gọn biểu thức sau
B = 1 + \(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{200}{2^{200}}\)
\(B=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\)
\(2B=2\left(1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{200}{2^{200}}\right)\)
\(2B=2+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{200}{2^{199}}\)
\(2B-B=\left(2+\frac{3}{2^2}+...+\frac{200}{2^{199}}\right)-\left(1+\frac{3}{2^3}+...+\frac{200}{2^{200}}\right)\)
.... đặt A=... giiả tiếp
Rút gọn biểu thức sau
B = 1 + \(\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{200}{2^{200}}\)
Rút gọn biểu thức:
a) A=1+3+\(^{ }3^2\)+...+\(3^{200}\)
b)B=4+4+\(4^2\)+4+...+\(^{ }4^{200}\)
a) Ta có: A = 1 + 3 + 32 + ... + 3200
⇒ 3A = 3 + 32 + 33 + ... + 3200
⇒ 3A - A = (3 + 32 + 33 + ... + 3201) - (1 + 3 + 32 + ... + 3200)
⇒ 2A = 3201 - 1
⇒ A = 2A : A = \(\dfrac{3^{201}-1}{2}\)
Vậy A = \(\dfrac{3^{201}-1}{3}\)
a: \(3A=3+3^2+3^3+...+3^{201}\)
=>\(2A=3^{201}-1\)
hay \(A=\dfrac{3^{201}-1}{2}\)
b: \(B=4+4^2+4^3+...+4^{200}\)
=>\(4B=4^2+4^3+4^4+...+4^{201}\)
=>\(3B=4^{201}-4\)
hay \(B=\dfrac{4^{201}-4}{3}\)
Thu gọn biểu thức:
\(Q=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
Q=\(\frac{1}{\sqrt{2}-\sqrt{3}}\)\(\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\).\(\sqrt{\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\)\(\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\)\(\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{3-2}}\)=\(\frac{1}{\sqrt{2}-\sqrt{3}}\).\(\left(\sqrt{3}-\sqrt{2}\right)^{ }\)=-1
Thu gọn biểu thức:
-1/3 + 1/3^2 - 1/3^3 + ... - 1/3^101
B= -1/3+1/3^2-1/3^3+…+1/3^100-1/3^101
3B= -1+1/3-1/3^2+…+1/3^99-1/3^100
3B+B=4B=-1-1/3^101
=>B=(-1-1/3^101)/4
Vậy B=(-1-1/3^101)/4
Thu gọn biểu thức:
\(E=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
Ta có: \(E=\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
\(=\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}}\)
\(=\frac{1}{\sqrt{2}-\sqrt{3}}\cdot\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\)
\(=-\frac{1}{\sqrt{3}-\sqrt{2}}\cdot\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\)
\(=-\sqrt{\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\cdot\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}}\)
\(=-\sqrt{\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)
\(=-\sqrt{\frac{1}{3-2}}=-1\)
Thu gọn biểu thức :
\(P=\frac{1}{\sqrt{2}-\sqrt{3}}.\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
thu gọn các biểu thức rồi tính giá trị biểu thức:
A=\(2x^2-4x^3+7-x^2-3x^3\) tại x=1
\(A=x^2-7x^3+7\)Thay x = 1 ta được
\(A=1-7+7=1\)
Thay x=1 vào A ta có:
\(A=2x^2-4x^3+7-x^2-3x^3\\
=x^2-7x^3+7\\
=1^2-7.1^3+7\\
=1-7+7\\
=1\)
thay x-1 vào A ta đc :
\(A=2.1^2-4.1^3+7-1^2-3.1^3\)
=1
HT
Thu gọn biểu thức sau A=\(\sqrt{\sqrt{5}+\sqrt{3}+1+2\sqrt{\sqrt{15}-2\sqrt{3}+3\sqrt{5}-6}}-\sqrt{\sqrt{3}+3}\)
\(A=\sqrt{\left(3+\sqrt{3}\right)+2\sqrt{\left(3+\sqrt{3}\right)\left(\sqrt{5}-2\right)+\left(\sqrt{5}-2\right)}-\sqrt{3+\sqrt{3}}}\)
\(=\sqrt{3+\sqrt{3}}+\sqrt{\sqrt{5}-2}-\sqrt{3+\sqrt{3}}=\sqrt{\sqrt{5}-2}\)
ok???