tìm y: y x 5 - y : 5 = 15
Tìm y biết 5/12 x (8 + y) - 1/5 x (15/4 + y) = 15
thanks nhưng bạn có thể giải thích cho mình tại sao lại chuyển thành phân số 13 x y + 155/ 60 = 15/1
cộng các số ở VT lại đó bạn
VD nhé \(\frac{3}{5}+\frac{a}{b}=\frac{3}{5}+\frac{5a}{5b}=\frac{3+5a}{5+5b}\)
tìm y: 7,75 - (0,5 x y : 5 -6,2) = 5
y : 6 x 7,2 + 1,3 x y + y : 2 + 15 = 19,95
\(7,75-\left(0,5\times y\div5-6,2\right)=5\)
\(0,5\times y\div5-6,2=7,75-5=2,75\)
\(0,5\div5\times y-6,2=2,75\)
\(0,1\times y=2,75+6,2=8,95\)
\(\dfrac{1}{10}y=8,95\)
\(y=8,95\times10=89,5\)
\(y\div6\times7,2+1,3\times y+y\div2+15=19,95\)
\(1,2\times y+1,3\times y+0,5y=19,95-15=4,95\)
\(y\left(1,2+1,3+0,5\right)=4,95\)
\(2y=4,95\)
\(y=4,95\div2=2,475\)
Tìm x , y biết x = 5 y =7 , x + y = 15
Tìm y biết: y x 4 + y x 5 + y = 150
a . y = 10
b. y = 9
c. y = 20
d. y = 15
y x 2 + y x 15/5 = 13/5
tìm x
y x 2+y x 15/5 = 13/5
y x ( 2 + 15/5 ) =13/5
y x 5 = 13/5
y = 13/5 : 5
y = 13/25
y x 2 + y x 8 + y x 5 = 15
Tìm y ???
y*2+y*8+y*5=15
y*(2+8+5)=15
y*15=15
y=15/15
y=1
tick tròn 410 nha
a) Tìm một số x/y biết 2x -y / x+y = 2/3
b) Tìm x,y biết x/2 = y/5 và y-x = 15
b,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)
Vậy : \(\hept{\begin{cases}\frac{y}{5}=5\Leftrightarrow y=25\\\frac{x}{2}=5\Leftrightarrow x=10\end{cases}}\)
\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{6x-3y}{2x+2y}=0\)
\(\Rightarrow6x-3y=0\)
\(3.\left(2x-y\right)=0\Rightarrow2x-y=0\)
\(\Rightarrow2x=y\)
\(adtcdts=ntc:\)
\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)
Cứ thế tính x,y
Tìm tất cả các số nguyên x,y
a)\(\dfrac{x}{2}=\dfrac{y}{5} mà x+y=35\)
b)\(\dfrac{x+2}{y+10}=\dfrac{1}{5} và y-3x=2\)
c)\(\dfrac{x}{4}=\dfrac{y}{5} và 2x-y=15\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
Tìm x,y, z biết:
x/y = y/-5 và 3x+2y=55
x/5=y/-4=z/6 và xyz=15
Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
=> \(\hept{\begin{cases}x=5k\\y=-4k\\z=6k\end{cases}}\) (1)
Khi đó, ta cóL
\(\left(5k\right).\left(-4k\right).\left(6k\right)=15\)
=> \(-120k^3=15\)
=> \(k^3=-\frac{1}{8}\)
=> \(k=-\frac{1}{2}\)
Thay k = -1/2 vào (1), ta được:
x = 5 . (-1/2) = -2,5
y = -4.(-1/2) = 2
z = 6 . (-1/2) = -3
Vậy ...
b)Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\)
\(\Rightarrow x=5k;y=-4k;z=6k\)
\(\Rightarrow xyz=5k.\left(-4k\right).6k=-120k^3\)
\(\Rightarrow15=-120k^3\)
\(\Rightarrow k^3=-\frac{1}{8}\Rightarrow k=-\frac{1}{2}\)
Từ \(\frac{x}{5}=-\frac{1}{2}\Rightarrow x=5\)
\(\frac{y}{-4}=-\frac{1}{2}\Rightarrow y=2\)
\(\frac{z}{6}=-\frac{1}{2}\Rightarrow z=-3\)
Vậy x = 5 ; y = -2 ; z = -3
Đặt \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{6}=k\Rightarrow x=5k;y=-4k;z=6k\)
\(\Rightarrow xyz=5k.\left(-4k\right).6k=k^3.\left(-120\right)=15\)
\(\Rightarrow k^3=\frac{15}{-120}=\frac{-1}{8}=\left(\frac{-1}{2}\right)^3\)
\(\Rightarrow k=-\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}.5=\frac{-5}{2}\\y=-\frac{1}{2}.\left(-4\right)=2\\z=-\frac{1}{2}.6=-3\end{cases}}\)