chứng minh hình bình hành ABCD có AC=BD thì góc A=Góc B=Góc C=Góc D=90 độ
1) tứ giác ABCD có góc B = góc D =90 độ ...a) chứng minh rằng bốn điểm A B C D cùng thuộc một đường tròn....b)So sánh độ dài AC và BD.Nếu AC bằng BD thì tứ giác ABCD là hình gì
a: Xét tứ giác ABCD có
\(\widehat{B}+\widehat{D}=180^0\)
nên ABCD là tứ giác nội tiếp
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
bạn hỏi thế này thì chả ai muốn làm -_- dài quá
Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!
dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ
Cho hình thang vuông ABCD , có góc A = góc D = 90 độ , AB = 1/2 CD . Gọi H là hình chiếu của D trên AC . Gọi M và N lần lượt là trung điểm HC và HD .
a) Chứng minh ABMN là hình bình hành
b) Chứng minh góc BMD = 90 độ
c) Cho CD = 16 cm , AD = 6 cm . Tính diện tích ABCD
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
Cho hình thang vuông ABCD , có góc A = góc D = 90 độ , AB = 1/2 CD . Gọi H là hình chiếu của D trên AC . Gọi M và N lần lượt là trung điểm HC và HD .
a) Chứng minh ABMN là hình bình hành
b) Chứng minh góc BMD = 90 độ
c) Cho CD = 16 cm , AD = 6 cm . Tính diện tích ABCD
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
Cho hình bình hành ABCD ( Â< 90), phân giác góc A và góc C cắt các cạnh đối diện ở E và F a) Tứ giác AECF là hình gì? Vì sao? b) Goi O là giao điểm của AC và BD. Chứng minh E và F đối xứng nhau qua O c) Phân giác góc B và góc D cắt phân giác góc C và góc A ở M; N; P; Q . Chứng minh rằng tứ giác MNPQ là hình chữ nhật d) Hình bình hành ABCD cần điều kiện gì để tứ giác MNPQ là hình vuông?
cho tứ giác ABCD có góc A bằng 90 độ góc C bằng 90 độ
a, chứng minh 4 điểm ABCD cùng thuộc 1 đường tròn
b. so sánh độ dài AC và BD
C. nếu AC=BD thì tứ giác ABCD là hình gì?
a: góc A+góc C=180 độ
=>ABCD nội tiếp đường tròn đường kính BD
b:
Gọi O là trung điểm của BD
=>ABCD nội tiếp đường tròn (O)
Vì BD là đường kính của đường tròn ngoại tiếp tứ giác ABCD
nên BD>AC
c: AC=BD
=>AC là đường kính của (O)
Xét tứ giác ABCD có
AC cắt BD tại trung điểm của mỗi đường
AC=BD
=>ABCD là hình chữ nhật
1. Phân tích đa thức thành nhân tử:
(x+y-2z)3+(y+z-2x)3+(x+z-2y)3
2. Cho hình bình hành ABCD. H, K là hình chiếu của A và C lên BD. M, N là hình chiếu của D và B lên C. Chứng minh MNHK là hình bình hành
3. Hình chữ nhật ABCD. BH vuông góc AC. M là trung điểm của AH. K là trung điểm của CD. Chứng minh góc BMK = 90o
4. Hình chữ nhật ABCD. Vẽ BH vuông góc AC. Trên tia đối BH lấy E sao cho BE = AH. Chứng minh góc ADE = 45 độ
Bài 3:
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
cho hình thang vuông abcd góc a= góc d= 90 độ có ac cắt bd tại o
chứng minh tam giác oab đồng dạng với tam giác ocd từ đó suy ra do/db=co/ca
chứng minh ac bình - bd bình= dc bình - ab bình
Cho tứ giác ABCD có góc A= Góc C= 90 độ
a) Chứng minh bốn đỉnh của tứ giác cùng thuộc 1 đường tròn
b) Chứng minh AC\(\le\)BD
c) Nếu AC=BD thì tứ giác ABCD là hình gì ?