Cho tam giác ABC có đường trung tuyến BM và phân giác CD cắt nhau tại H. Chứng minh HC/HD- AC/BC= 1
Cho tam giác ABC có đường phân giác CD, đường trung tuyến BM cắt nhau tại P và đặt E sao cho DE//BM. Chứng minh :
PC/PD - AC/BC = 1
PC/PD-AC/BC
=MC/ME-AD/DB
=MA/ME-AD/DB
\(=\dfrac{ME+EA}{ME}-\dfrac{AE}{EM}\)
=1
Cho tam giác ABC, trung tuyến BM cắt đường phân giác CD của góc ACB tại P. Chứng minh: \(\dfrac{PC}{PD}-\dfrac{AC}{BC}=1\)
Lời giải:
Xét tam giác $ADC$ có $B,P,M$ thẳng hàng và thuộc các cạnh của tam giác $ADC$ nên áp dụng định lý Menelaus:
$\frac{AM}{CM}.\frac{PC}{PD}.\frac{BD}{BA}=1$
$\Leftrightarrow \frac{PC}{PD}=\frac{AB}{BD}=\frac{BD+AD}{BD}$
$=1+\frac{AD}{BD}$
Mà $\frac{AD}{BD}=\frac{AC}{BC}$ theo tính chất đường phân giác
Do đó: $\frac{PC}{PD}=1+\frac{AC}{BC}$
$\Rightarrow \frac{PC}{PD}-\frac{AC}{BC}=1$
Ta có đpcm.
cho tam giác ABC vuông tại B đường cao BH cho AH=9 cm, HC=16 cm
a) tính BH,AB,BC
b)từ H kẻ HE vuông góc BC .chứng minh BE.BC=HA.HC
c)trung tuyến BM của tam giác ABC .Tính góc BMH
d0 Tia phân giác góc ABC cắt AC tại D. CM: 1/BA + 1/BC = (căn 2)/BD
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC
Cho tam giác ABC có đường cao CH, phân giác AD, trung tuyến BM gặp nhau tại điểm O. Kẻ MN vuông góc với HC tại N. Từ A kẻ đường thẳng vuông góc với AC tại A, đường thẳng đó cắt BC tại P. Chứng minh NM/BH=AM/AB
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
a, Xét tam giác ADB và tam giác AEC có:
^A chung
^AEC = ^ADB
\(\Rightarrow\) ADB đồng dạng AEC
b,Xét tam giác HEB và tam giác HDC có:
^EHB = ^DHC
^HEB = ^HDC
\(\Rightarrow\) tam giác HEB đồng dạng tam giác HDC
\(\Rightarrow\) HE.HC = HD.HB
Cho tam giác ABC, các đường cao BD, CE cắt nhau tại H. Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K. Gọi M là trung điểm BC.
a/ chứng minh tam giác ADB đồng dạng tam giác AEC
b/ chứng minh HE. HC = HD. HB
a) xét tam giác ADB và AEC có:
góc A chung
góc ADB= góc AEC (=90 độ)
=> ADB đồng dạng vs AEC (g.g)
b) xét tam giác EHB và tam giác DHC có:
EHB= DHC (2 góc đối đỉnh)
HEB- HDC (=90độ)
=> EHB =DHC (g.g)
=> HE/HB = HD/HC
=> HE.HC=HD.HB
a) xét tam giác ADB và AEC có:
góc A chung
góc ADB= góc AEC (=90 độ)
=> ADB đồng dạng vs AEC (g.g)
b) xét tam giác EHB và tam giác DHC có:
EHB= DHC (2 góc đối đỉnh)
HEB=HDC (=90độ)
=> EHB đồng dạng DHC (g.g)
=> HE/HB = HD/HC
=> HE.HC=HD.HB
Cho tam giác ABC vuông tại A đường cao AH và trung tuyến BM cắt nhau tại O , CO cắt AB tại D . Qua A vẽ d // BC ,D cắt CD, BM tại E và F.
a)\(\frac{HB}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)
b) Giả sử AC=BH. CM : CD là phân giác góc ACD
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.