Tìm các số nguyên dương x, y thỏa mãn
x³+y và y³+x đều chia hết cho x²+y²
Tìm các số nguyên dương x, y thỏa mãn
x³+y và y³+x đều chia hết cho x²+y²
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
cho x,y là các số nguyên thỏa mãn (x-y)^2 +2xy chia hết cho 4 . Chứng minh rằng x và y đều chia hết cho 2
\(\left(x-y\right)^2+2xy⋮4\)
\(\Rightarrow x^2-2xy+y^2+2xy⋮4\)
\(\Rightarrow x^2+y^2⋮4\)
\(\Rightarrow x^2⋮4;y^2⋮4\)
mà \(4⋮2\)
\(\Rightarrow x^2⋮2;y^2⋮2\Rightarrow x⋮2;y⋮2\)
\(\Rightarrow dpcm\)
Bài làm của bạn Trí từ chỗ \(x^2+y^2⋮4\Rightarrow x^2,y^2⋮4\) thì bạn còn phải xét thêm trường hợp \(x,y\) cùng lẻ nữa. Vì số chính phương khi chia cho 4 chỉ có thể dư 0 hoặc 1 nên nếu \(x,y\) lẻ thì \(x^2+y^2\) chia 4 dư 2, không thỏa mãn. Vậy mới suy ra được \(x^2,y^2⋮4\). Còn lại bạn đúng hết rồi.
tìm các số nguyên x y thỏa mãnx^2 +xy-2xy-3x=3
tìm các số x,y nguyên thỏa mãnx2y2-x2-8y2=2xy
cho p là số nguyên dạng p= 4k +3 . Gỉa sử các số nguyên x,y thỏa mãn x^2+y^2 chia hết cho p. chứng minh x và y đều chia hết cho p
x^2 = -y^2 mod p,tức (-1/p) =1 tức p=1 mod 4
Hoặc cả 2 x,y cùng chia hết cho p
tìm các số x, y nguyên dương biết (x+1) chia hết cho y và (y+1) chia hết cho x
1.Cho x,y là các số nguyên dương sao cho A=\(x^4+y^4\)cũng là số nguyên dương. CMR; x,y đều chia hết cho 3 và 5 . Từ đó tìm giá trị nhỏ nhất của A