Tìm các số nguyên dương x, y thỏa mãn
x³+y và y³+x đều chia hết cho x²+y²
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Cho a,b là các số nguyên dương thỏa mãn p=a^2+b^2 là số nguyên tố và p-5 chia hết cho 8 . Giả sử x,y là các số nguyên thỏa mãn ax^2-by^2 chia hết cho p. Chứng minh rằng cả 2 số x,y chia hết cho p
Bài 1: Tìm các số nguyên dương a,b thỏa mãn a+2 chia hết cho b và b+3 chia hết cho a.
Bài 2: Cho các số nguyên dương phân biệt x,y,z sao cho x3+y3+z3 chia hết cho x2y2z2. Tính P=(x3+y3+z3)/(x2y2z2)
cho x, y là các số nguyên dương thỏa mãn (x^2-1)/2 = (y^2-1)/3 .Chứng minh x^2 -y^2 chia hết cho 40
Cho x,y,z là các số nguyên thỏa mãn x4+y4+z4 chia hết cho 4. Cm x,y,z đều chia hết cho 4
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
Cho 2 số nguyên dương x,y và x>1 thỏa mãn 2x2-1=y15. CMR x chia hết cho 15
cho x, y là các số nguyên dương thỏa mãn x^2−12=y^2−13 .chứng minh rằng x^2 -y^2 chia hết cho 40