Tìm UWCLN 1;75
A.1. B.75.
C.5. D.3.
1.Tìm a,b thuộc N* biết a.b=6144 và UwCLN (a,b)=32
2. Tìm UWCLN của (2n-1, 9n+4) (n thuộc N*)
Bạn nên xem lại đề vì 61440 ms làm đc
Tích của a/32 với b/32 là:
61440 : 32 : 32= 60.
Chắc chắn a/32 và b/32 sẽ nguyên tố cùng nhau vì ước chung ln của chúng là 32.
Vậy a là 5.32=160 và b là 12.32=384
tìm UWCLN [7n+3];[8-1][nEN]
Tìm UWCLN của a và a+1
Tìm UwCLN của 2n-1 và 9n+4(n\(\in\)N*)
Gọi d=UCLN(2n-1;9n+4)
\(\Leftrightarrow9\left(2n-1\right)-2\left(9n+4\right)⋮d\)
\(\Leftrightarrow-17⋮d\)
=>d=17
Tìm UWCLN của các số sau:
a)54;90 và 18
b)36;40 và 1
a: ƯCLN(54;90;18)=18
b: ƯCLN(36;40;1)=1
Tìm UWCLN của 2n+1 và 3n+1 với mọi n thuộc N
Gọi d là ƯCLN(2n+1;3n+1) với d thuộc N
Ta có 2n+1 chia hết cho d=> 3(2n+1 ) chia hết cho d => 6n +3 chia hết cho d (1)
3n+1 chia hết cho d=> 2(3n+1) chia hết cho d => 6n+2 chia hết cho d (2)
Từ (1) và (2) suy ra (6n+3)-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy ƯCLN của 2n+1 và 3n+1 là 1
Gọi d là ƯCLN của 2n+1 và 3n+1 (d thuộc N*). Do đó:
2n+1 chia hết cho d và 3n+1 chia hết cho d.
Vì 2n+1 chia hết cho d nên 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d
Vì 3n+1 chia hết cho d nên 2.(3n+1) chia hết cho d hay 6n+2 chia hết cho d nên:
(6n+3) - (6n+2) chia hết cho d
6n+3 - 6n - 2 chia hết cho d
1 chia hết cho d
suy ra d = 1
Vậy ƯCLN của 2n+1 và 3n+1 bằng 1
Tìm BCNN(12,90) và UWCLN(12,90). So sánh tích của BCNN và UWCLN của 12,90 với tính 12.90
Mình phân tích ra thôi :
\(12=2.2.3\)
\(90=2.3.3.5\)
Tìm UwCLN của 1+2+3+...+n và 2n+1 với n thuộc N*
Ta có: 1+2+3+...+n = n(n+1)/2
Gọi d = ƯCLN ( n(n+1)/2, 2n+1) ( d thuộc N*)
=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d
=> n(n+1) chia hết cho d, 2n+1 chia hết cho d
=> n2+n chia hết cho d, n.(2n+1) chia hết cho d
=> n2+n chia hết cho d, 2n2+n chia hết cho d
=> (2n2+n) - (n2+n) chia hết cho d
=> 2n2+n-n2-n chia hết cho d
=> n2 chia hết cho d
Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d
=> n chia hết cho d
=> 2n chia hết cho d
Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN ( n(n+1)/2, 2n=1) = 1
Vậy ƯCLN của 1+2+3+...+n và 2n+1 bằng 1 với n thuộc N*
tìm UwCLN của 7n+3 và 8n-1 với n là số tự nhiên
Đặt \(d=ƯCLN(7n+3,8n-1)\)
\(\Rightarrow \begin{cases} 7n+3\vdots d\\ 8n-1\vdots d \end{cases}\\ \Rightarrow 8(7n+3)-7(8n-1)\vdots d\\ \Rightarrow 56n+24-56n+7\vdots d\\ \Rightarrow 31\vdots d\)
Mà \(d\) lớn nhất \(\Rightarrow d=31\)
Vậy \(ƯCLN(7n+3,8n-1)=31\)