Tìm x
\(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\frac{3x-y}{x+y}=\frac{3}{4}\)
b1 tìm số nguyên x,y,z biết
a,\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{-80}\)
b,\(\frac{x+3}{7+y}=\frac{3}{7}\) và x+y =20
c,\(\frac{111}{37}< x< \frac{91}{13}\)
d,\(\frac{-84}{14}< 3x< \frac{108}{9}\)
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
Tìm số hữu tỉ x trong tỉ lệ thức sau
a) 0,4:x=x:0,9 b)\(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
c)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6x+7\right)\) d) \(\frac{37-x}{x+13}=\frac{3}{7}\)
Cho tỉ lệ thức \(\frac{3x-y}{x+y}=\frac{3}{4}\). Tính giá trị của tỉ số \(\frac{X}{y}\)
Tìm x,y,z
\(a,0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(b,\frac{37-x}{x+13}=\frac{3}{2}\)
\(c,\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(d,\frac{x}{y}=\frac{2}{3};x.y=96\)
\(e,\frac{x}{2}=\frac{y}{3}=\frac{z}{5};x.y.z=810\)
Ai giúp mình đầu tiên mình k cho nha
a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)
\(6.x+7=\frac{2}{3}:\frac{1}{6}\)
\(6.x+7=4\)
\(6.x=4-7\)
\(6.x=-3\)
\(x=-3:6\)
\(x=-0,5\)
Vậy x=-0,5 hay \(\frac{-1}{2}\)
d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)
Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)
Đặt k=\(\frac{x}{3}=\frac{y}{2}\)
\(\Rightarrow x=3.k;y=2.k\)
Vì \(x.y=96\)nên \(2k.3k=96\)
\(\Rightarrow6.k^2=96\)
\(\Rightarrow k^2=96:6\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4\)hoặc\(k=-4\)
+)Với \(k=4\)thì \(x=2\);\(y=3\)
+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)
Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x.y.z=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
Vì \(x.y.z=810\)nên \(2k.3k.5k=810\)
\(\Rightarrow30.k^3=810\)
\(\Rightarrow k^3=810:30\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)
Vậy \(x=6\); \(y=9\); \(z=15\)
Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha
Bài 1 : Tìm x biết
a) \(13\frac{1}{3}\div1\frac{1}{3}=26\div\left(2x-1\right)\)
b) \(0,2:1\frac{1}{5}=\frac{2}{3}\div\left(6x+7\right)\)
c) \(\frac{37-x}{x+13}=\frac{3}{7}\)
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
e) \(2\frac{2}{\frac{3}{0,002}=}\frac{1\frac{1}{9}}{x}\)
Bài 2 : Tìm x,y,z biết:
a) \(\frac{x}{7}=\frac{4}{13}\)và x + y = 40
b) 3x = 2y , 7y = 57 và x - y + z = 32
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{7-4}{4}\)và 2x + 3y - z = 50
Bài 3 .
a) 6,88 : x =12:27
b) \(8\frac{1}{3}\div11\frac{2}{3}=13:\left(2x\right)\)
Giải giúp mk
Mk đng cần gấp
1.
a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)
<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26
<=> 10 + 26 = 13x
<=> 13x = 36
<=> x = \(\frac{36}{13}\)
b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)
<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)
<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)
<=> x = \(\frac{1}{7}\)
c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)
<=> (37 - x) . 7 = 3.(x + 13)
<=> 119 - 7x = 3x + 39
<=> -7x - 3x = 39 - 119
<=> -10x = -80
<=> x = 8
d) \(\frac{x-1}{x+5}=\frac{6}{7}\)
<=> 7(x - 1) = 6(x + 5)
<=> 7x - 7 = 6x + 30
<=> 7x - 6x = 30 + 7
<=> x = 37
e)
2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)
<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)
<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)
Bài 2. đề sai
Bài 3.
a) 6,88 : x = \(\frac{12}{27}\)
<=> x = 6,88 : \(\frac{12}{27}\)
<=> x = 15,48
b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x
<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x
<=> \(\frac{5}{7}=13:2x\)
<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)
<=> x = 9,1
Tìm x, y, x biết:
\(\frac{x}{3}=\frac{y}{4};\frac{y}{6}=\frac{z}{8}\)và 3x - 2y - z = 13
Ta có: \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\) => \(\frac{y}{12}=\frac{z}{16}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\) => \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\)
=> \(\hept{\begin{cases}\frac{x}{9}=-1\\\frac{y}{12}=-1\\\frac{z}{16}=-1\end{cases}}\) => \(\hept{\begin{cases}x=-1.9=-9\\y=-1.12=-12\\z=-1.16=-16\end{cases}}\)
Vậy ...
\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{6}=\frac{z}{8}\Leftrightarrow z=\frac{8y}{6}\Leftrightarrow z=\frac{4y}{3}\)
Ta có: 3x - 2y - z = 13
\(\Leftrightarrow3\times\frac{3y}{4}-2y-\frac{4y}{3}=13\)
\(\Leftrightarrow-\frac{1}{2}y=13\)
\(\Leftrightarrow y=-26\). Từ đây ta dễ dàng tính x, y nhờ các công thức đã lập
Đây là phương pháp quy nhiều ẩn về 1 ẩn
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
Tìm x, y, z
a) \(\sqrt{16}x+\frac{3}{4}=2\sqrt{\frac{4}{25}}+0,01.\sqrt{100}\)
b) \(\left|x\right|+3^2=2^2+\left(\frac{1}{2}\right)^3\)
c) \(2x\left(x-\frac{2}{3}\right)=0\)
d) \(\frac{37-x}{x+13}=\frac{3}{7}\)
a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)
=>4x=3/20
hay x=3/80
b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)
c: 2x(x-2/3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
=>259-7x=3x+39
=>-10x=-220
hay x=22
Giải các hpt sau:
\(7.\hept{\begin{cases}4xy+4\left(x^2+y^2\right)+\frac{3}{\left(x+y\right)^2}=\frac{85}{3}\\2x+\frac{1}{x+y}=\frac{13}{3}\end{cases}}\)
\(8.\hept{\begin{cases}2+3x=\frac{3}{y^3}\\x^3-x=\frac{6}{y}\end{cases}}\)
Pls help me
a) \(\frac{x}{5}\)=\(\frac{3}{y}\)và 0<x<y
b)\(\frac{2}{x}\)=\(\frac{y}{7}\)và x>0
c)\(\frac{x}{-15}\)=\(\frac{3}{y}\)và x<y<0
d)\(\frac{x-4}{y-3}\)=\(\frac{4}{3}\)và x-y=5
e)\(\frac{111}{37}\)<x<\(\frac{91}{13}\)
f)\(\frac{-84}{14}\)\(\le\)3x\(\le\frac{108}{9}\)
Giúp mình với
kết quả thì mình ko chắc