giá trị nguyên dương của x để biểu thức
\(F=\frac{3x-2}{x+3}\)có giá trị nguyên dương là
???
giá trị nguyên dương của x để biểu thức
F=\(\frac{3x-2}{x+3}\) có giá trị nguyên dương
giá trị nguyên dương của x để biểu thức
\(F=\frac{3x-2}{x+3}\)
có giá trị nguyên dương
Cho biểu thức: P= 3/x+2 - 2/2-x -8/x^2-4
a) Tìm điều kiện của biến x để giá trị của biểu thức P được xác định.
b) Rút gọn biểu thức P.
c) Tìm giá trị nguyên dương của x để giá trị của biểu thức P là một số nguyên dương.
a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)⇔\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)
Vậy biểu thức P xác định khi x≠ -2 và x≠ 2
b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)
P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)
P= \(\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)
P=\(\dfrac{5x-10}{(x-2)(x+2)}\)
P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)
P=\(\dfrac{5}{x+2}\)
Vậy P=\(\dfrac{5}{x+2}\)
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Tìm x nguyên dương để biểu thức 3 x − 2 nhận giá trị nguyên
a) Tim giá trị nguyên của x để biểu thức \(\frac{11}{\sqrt{x}-5}\) nhận giá trị nguyên
b) Tim số nguyên x để B=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\) có giá trị là số nguyên dương
a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))
Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có :
\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)
b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))
Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)
Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có :
\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)
Cho biểu thức A=\(\frac{3x^3-14x^2+3x+36}{3x^3-19x^2+33x-9}\)
a) Tím giá trị của x để biểu thức A xác định
b)Tìm giá trị của x để biểu thức A có giá trị bằng 0
c) Tìm giá trị nguyên của x để biểu thức A có giá trị nguyên
a, A xác định
\(\Leftrightarrow3x^3-19x^2+33x-9\ne0\)
\(\Leftrightarrow3x^3-x^2-18x^2+6x+27x-9\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-6x\left(3x-1\right)+9\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2\ne0\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne3\end{cases}}\)
b, \(\frac{3x^3-14x^2+3x+36}{3x^2-19x^2+33x-9}=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}\)
\(=\frac{\left(3x^2-5x-12\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)^2}=\frac{\left(3x+4\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{3x+4}{3x-1}\)
\(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=-\frac{4}{3}\) (thỏa mãn ĐKXĐ)
c, \(A=\frac{3x+4}{3x-1}=1+\frac{5}{3x-1}\in Z\Rightarrow5⋮\left(3x-1\right)\)
\(\Rightarrow3x-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-\frac{4}{3};0;\frac{2}{3};2\right\}\)
Mà \(x\in Z,x\ne\left\{\frac{1}{3};3\right\}\Rightarrow x\in\left\{0;2\right\}\)
Bài của Hùng rất thông minh
Đang định có cách khác mà dài hơn cách Hùng nên thui
^^ 2k5 kết bạn nhé
Cho P=3/x+2-2/2-x-8/x^2-4
tìm điều kiện của biến x để giá trị P được xác định
Rút gọn biểu thức P
Tìm giá trị nguyên dương của x để giá trị P là một số nguyên dương
Cho biểu thức C=\(\frac{X^3}{X^2-4}-\frac{X}{X-2}-\frac{2}{X+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C dực xác dịnh
B,Tĩm x đẻ C =0
C, tìm giá trị nguyên của x để C nhận giá trị dương
a,ĐKXĐ: \(x^2-4\ne0\) \(\Leftrightarrow x\ne\pm2\)
b,Rút gọn:
\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^3-x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^3-4x\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}\)
\(=x-1\)
Để C = 0 thì x - 1 = 0
=> x = 1
Vậy : Để C = 0 thì x = 1
c,Để C nhận giá trị dương thì C > 0
Hay: x - 1 > 0
<=> x > 1
Vậy: Để C dương thì x > 1
=.= hok tốt!!
C=\(\frac{x^3}{X^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
tìm giá trị nguyên của x để biểu thức C nhận giá trị dương
\(C=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
=> C nguyên dương khi và chỉ khi x -1 >0 => x > 1 như vậy với x nguyên dương lớn hơn 1 thì C nguyên dương
\(C=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3-x\left(x+2\right)-2\left(x-2\right)}{x^2-4}=\frac{x^3-x^2-2x-2x+4}{x^2-4}\)
\(C=\frac{x\left(x^2-4\right)-\left(x^2-4\right)}{x^2-4}=\frac{\left(x^2-4\right)\left(x-1\right)}{x^2-4}=x-1\)
\(\Rightarrow C\in Z^+\)với \(x>1\)