Chứng minh rằng hiệu hai số nguyên liên tiếp là một số lẻ
Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ
Chứng minh rằng hiệu các bình phương của hai số nguyên liên tiếp là một số lẻ
gọi 2 số nguyên liên tiếp là a và a+1 .Ta có:
(a+1)2 - a2 =a2+2a+1-a2
=2a+1
vì 2a là số chẵn nên 2a+1 là số lẻ
=> KL
Chứng minh rằng hiệu các bình phương của hai số lẻ liên tiếp là một số lẻ
Sửa đề: Là số chẵn
Gọi hai số lẻ liên tiếp là 2n-1 và 2n-3
Ta có: \(\left(2n-1\right)^2-\left(2n-3\right)^2\)
\(=\left(2n-1-2n+3\right)\left(2n-1+2n-3\right)\)
\(=2\left(4n-4\right)⋮2\)
Chứng minh rằng hai số chẳn, lẻ liên tiếp là hai số nguyên tố cùng nhau.
đề bài sai rồi ko có chữ chẳng còn nếu sai thật thì 2 số liên tiếp có 1 số chắn và 1 số lẻ nên 2 số là 2 số nguyên tố cung nhau ai tivk mình sẽ may mắn
hình như đề bạn viết lộn thì phải
chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp
Gọi n; n+1 là hai số tự nhiên liên tiếp
Ta có \(\left(n+1\right)^2-n^2=n^2+2n+1-n^2=2n+1.\)
Nếu n lẻ => 2n chẵn => 2n+1 lẻ
Nếu n chẵn => 2n chẵn => 2n+1 lẻ
=> Hiệu bình phương hai số tự nhiên liên tiếp luôn là 1 số lẻ hay mỗi số lẻ là hiệu bình phương của 2 số tự nhiên liên tiếp
Chứng minh rằng 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau.
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Hai số nguyên tố cùng nhau là hai số lẻ có BCNN là tích của chúng
7 và 9 là hai số lẻ liên tiếp cũng là hai số nguyên tố cùng nhau
BCNN= 63
ƯCLN=1
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ liên tiếp. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
Chứng minh rằng :hai số lẻ liên tiếp là nguyên tố cùng nhau
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
1. Tính tổng của n số lẻ đầu tiên
2. Chứng minh rằng mỗi số lẻ là hiệu của bình phương hai số tự nhiên liên tiếp. Áp dụng viết số 37 dưới dạng hiệu của bình phương hai số lẻ liên tiếp