Câu 4 : Chứng minh rằng 51 không thể là tổng của 2 số nguyên tố.
Chứng minh rằng 51 không thể là tổng của 2 số nguyên tố.
51=2+49(loại vì 49 là số nguyên tố)
51=2a+1+2k+1=2(a+k)+2(vô lý vì 51 là số lẻ)
Do đó: 51 không thể là tổng của hai số nguyên tố
Bài 1: tìm số nguyên tố p sao cho
a, p+6; p+12; p+24; p+38 là các số nguyên tố
b, p+4; p+8 là các số nguyên tố
Bài2: cho p và p+4 là các số nguyên tố (p>3)
Chứng minh rằng: 11p+1 là hợp số
Bài 3 : tổng của hai số nguyên tố có thể bằng 2003 không? Vì sao?
Bài 4: Cho A=2+2^2+...+2^2017
Chứng minh rằng: A+3 là hợp số
bài 3 : ko vì tổng của hai số nguyên tố là 2003 nên
Trong đó phải có 1 số chẵn và một số lẻ
Mà số nguyên tố duy nhất chẵn là số 2
=> Số còn lại bằng 2001 mà 2001 chia hết cho 3 nên nó là hợp số
Câu 2 : Chứng minh rằng tổng của 4 số nguyên tố bất kỳ lớn hơn 7 có kết quả là hợp số.
Câu 1 : Chứng minh rằng: 25^15+10^20 là hợp số
Câu 1:
\(25^{15}+10^{20}\)
\(=5^{30}+5^{20}\cdot2^{20}\)
\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)
=>Đây là hợp số
1 . Chứng minh rằng nếu a5 chia hết cho 5 thì a chia hết cho 5 .
2 . Chứng minh rằng nếu tích 5 số bằng 1 thì tổng của chúng không thể bằng 0 .
3 . Chứng minh rằng tồn tại một giá trị n thuộc N* sao cho n2 + n + 1 không phải lá số nguyên tố .
4 Chứng minh rằng nếu n là số nguyên tố lớn hơn 3 thì n2 - 1 chia hết cho 24 .
1.Áp dụng định lý Fermat nhỏ.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
Cách 2
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)
Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)
Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)
Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)
Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)
Vậy \(a^5-a⋮5\)
Câu 9 : Chứng minh rằng: 2515 + 1020 là hợp số
Câu 10 : Chứng minh rằng tổng của 4 số nguyên tố bất kỳ lớn hơn 7 có kết quả là hợp số.
Câu 9:
Vì 2015;1020 đều chia hết cho 5
nên 2015+1020 là hợp số
Chứng minh rằng với mọi số nguyên tố p > 3 , ba số p, p+2 , p+4 không thể là đồng thời là những số nguyên tố .
Nếu p=3k+1
=>p+4=3k+1+4=3k+5
=>p+2=3k+1+2=3k+3 chia hết cho 3=>không thể đồng thời là số nguyên tố.
Nếu p=3k+2
=>p+2=3k+2+2=3k+4
=>p+4=3k+2+4=3k+6 chia hết cho 3 => không thể đồng thời là số nguyên tố
chứng minh rằng số 2015 và 2017 không viết được dưới dạng tổng của 2 số nguyên tố
Chứng minh rằng số 19 và 43 có the viết được tổng của số nguyên tố
Chứng minh rằng với mọi số nguyên tố p>3 ,ba số p,p+2,p+4 không thể đồng thời là những số nguyên tố.
Vì p nguyên tố lớn hơn 3 => p chia 3 dư 1 hoặc 2
TH1: p=3k+1(k thuộc N)
=>p+2=3(k+1)
=>p+2 chia hết cho 3
Mà p+2 nguyên tố => p\(\ne\) 3k+1
TH2: p=3x+2(\(x\in\)N)
=>p+4=3(x+2)
=> p+4 chia hết cho 3
Mà p+4 nguyên tố=>p\(\ne\)3x+2
Vậy p nguyên tố lớn hơn 3 thì p,p+2,p+4 ko cùng nguyên tố
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
CÁC BẠN GIÚP MIK VỚI NHA!!! CÂU NÀO CÁC BẠN BIẾT THÌ MONG HÃY GIÚP MIK RỒI MIK SẼ TICK CHO...