Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hắc Bá Hiếu
Xem chi tiết
Thảo Vi
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 20:42

undefinedundefinedundefined

Hằng Nguyễn Thị Thu
Xem chi tiết
Phan Thị Hà Vy
Xem chi tiết
Kiệt Nguyễn
27 tháng 5 2020 lúc 19:12

Đặt \(p=a+b+c;q=ab+bc+ca;r=abc\)

Khi đó p = 1 và bất đẳng thức cần chứng minh trở thành: \(5\left(p^2-2q\right)\le6\left(p^3-3pq+3r\right)+1\)

hay \(5-10q\le6\left(1-3q+3r\right)+1\Leftrightarrow18r-8q+2\ge0\)(*). Đúng theo BĐT Schur với p = 1 vì: 

(*)\(\Leftrightarrow9r-4q+1\ge0\Leftrightarrow p^3+9r\ge4pq\)

Vậy ta có điều phải chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

Đỗ Tố Quyên
Xem chi tiết
Rau
21 tháng 6 2017 lúc 9:33

m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab))  = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1

Ben 10
23 tháng 8 2017 lúc 22:01

Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD) 
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD) 
Vẽ AE _I_ SD ( E thuộc SD). 
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a 
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3 
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3

Lê Ngọc Kiều Ly
Xem chi tiết
Phùng Khánh Linh
2 tháng 12 2016 lúc 19:50

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

GG boylee
Xem chi tiết
nguyen the tien
Xem chi tiết