Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hồng Hạnh
Xem chi tiết
Mystery Guy
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 23:01

b: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

Đặng Tâm Anh
Xem chi tiết
Kim Mi Young
14 tháng 11 2021 lúc 8:19
a) Ta có: ΔAMB = ΔAMC ⇒ MB = MC (2 cạnh tương ứng) ⇒ M là trung điểm của BC b) Ta có: ΔAMB = ΔAMC ⇒ ˆ B A M = ˆ C A M ⇒ B A M ^ = C A M ^ (2 góc tương ứng) ⇒ AM là tia phân giác của ˆ A A ^ c) Ta có: ΔAMB = ΔAMC ⇒ ˆ A M B = ˆ A M C ⇒ A M B ^ = A M C ^ (2 góc tương ứng) mà ˆ A M B + ˆ A M C = 180 o A M B ^ + A M C ^ = 180 o ⇒ ˆ A M B = ˆ A M C = 90 o ⇒ A M B ^ = A M C ^ = 90 o ⇒ AM ⊥ BC
Khách vãng lai đã xóa
Trần Sỹ Hoàng
Xem chi tiết
nguyễn phương hoa
Xem chi tiết
Ngo Anh Ngoc
Xem chi tiết
Xem chi tiết

A B C M D E I

Gọi O gia điểm DM và AB, O' gia điểm EM và AC (mk quên lấy trong hình mất nên bạn lấy hộ mình nhé ) 

a) Vì M trung điểm BC Nên AM=MA=MC \(\Rightarrow\Delta BMA\)và \(\Delta AMC\)cân tại M.

Vì \(\Delta BMA\)cân tại M nên \(\widehat{MBA}=\widehat{MAB}\)Mặt khác \(\widehat{DAB}=90^0-\widehat{MAB};\widehat{DBA}=90^0-\widehat{MBA}\)Nên \(\widehat{DAB}=\widehat{DBA}\Rightarrow\Delta BDA\)cân tại D \(\Rightarrow DB=DA\).Tương tự \(AE=EC\)

Từ đó ta được \(\Delta DBM=\Delta DAM\left(c.g.c\right)\Rightarrow\widehat{BDM}=\widehat{ADM}\)nên DO phân giác tam giác BDA. Mà BDA là tam giác cân nên DO vuông góc với BA hay \(\widehat{MOA}=90^0\)

Tương tự \(\widehat{MO'A}=90^0\)

Nên \(\widehat{DME}=90^0\)hay tam giác DME vuông tại M 

Tam giác DMA đồng dạng tam giác MEA nên AE/MA = MA/DA hay CE/MA=MA/BD Suy ra \(BD\cdot CE=AM^2=\left(\frac{1}{2}\cdot BC\right)^2=\frac{1}{4}BC^2\left(ĐPCM\right)\)

b) Vì BD//CE nên theo ta-lét BD/CE=DI/IC Suy ra DA/AE=DI/IC => AI//EC nên AI vuông góc BC
                                                                       ~ Chúc bạn học tốt ~ 

Khách vãng lai đã xóa

c) Gọi H là giao điểm của AI và BC. Đường thẳng qua B song song HE cắt đường thẳng qua C song song HD tại P. Chứng minh D, P, E thẳng hàng. Giúp mik với

Khách vãng lai đã xóa

Câu c) hơi bị gắt đó bạn ơi. Tôi giải không biết bạn hiểu không nữa :v. 

.Sau khi vẽ xong như đề bảo. Lấy K là giao điểm DH và BP,F là giao điểm của HE và CP. 

\(\Delta KBD\)và \(\Delta FEC\) có các cạnh tương ứng song song nên các đường thẳng KF, BE và DC (đi qua các đỉnh tương ứng) phải đồng quy, tức là cùng đi qua điểm I

Bây giờ áp dụng định lí Pappus(cậu tự lên mạng search định lí này nha) vào 6 điểm K, I, F,B, H, C ta được ba điểm D,P,E thẳng hàng.

Khách vãng lai đã xóa
trtu
Xem chi tiết

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

Xem chi tiết