Cho x = a - x.
Cmr x3+3ax-a3+1=0
1/ CMR: (a - b)3 + (b - a)3 = 0
2/ Cho x = a - 1. CMR: x3 + 3ax - a3 + 1 = 0
(a-b)^3+(b-a)^3
=(a-b+b--a)[(a-b)^2-(a-b)(b-a)+(b-a)^2]
=0
4) cho x=a-1. cmr x3+3ax-a3+1=0 giải giùm mình nha
\(x^3+3ax-a^3+1\)
\(=\left(a-1\right)^3+3a\left(a-1\right)-a^3+1\)
\(=a^3-3a^2+3a-1+3a^2-3a-a^3+1=0\)=>đpcm
trắc nghiệm
1. giá trị của đa thức -33+x3+x khi x=-1 là
a.2 b.-1 c.0 d.-1
2.nhân tử*ở vế phải của đẳng thức a3−a=(a2+a).3−a=(a2+a).*
a.a b.-a c.a-1 d.1-a
3.kết quả phép chia (x3+1):(x+1)(x3+1):(x+1)là
a.x2+x+12+x+1 b.x2−x+1x2−x+1 c.(x−1)2(x−1)2 d.x2−12−1
4.đa thức thích hợp điền vào chỗ ... của đẳng thức x+53x−2=...3x2−2xx+53x−2=...3x2−2x
a.x^2+5x b.x^2-5x
cho x+y=1 va xy khac 0 cmr x/(y3-1)-y/(x3-1)+2(x-y)/(x2y2+3)=0
x+y=a , x2+y2=b ,x3+y3=c c/m a3-3ab+2c=0
Cho a+b+c=0. CMR: a3 + b3 + c3 = 3abc
rồi sau đó áp dụng: Tìm x, biết: (2x-2023)3 + (2020-x)3 + (23-x)3 = 0
a+b+c=0 nên a+b=-c
a^3+b^3+c^3
=(a+b)^3-3ab(a+b)+c^3
=(a+b+c)(a^2+2ab+b^2-bc-ac+c^2)-3ab(a+b)
=-3ab(-c)=3abc
(2x-2023)^3+(2020-x)^3+(23-x)^3=0
=>(2020-x)^3+(23-x)^3+[-(2020-x+23-x)^3]=0
=>3(2020-x)(23-x)(2x-2023)=0
=>\(x\in\left\{2020;23;\dfrac{2023}{2}\right\}\)
Áp dụng bđt AM - GM:
\(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z;2x+2y+2z\ge6\sqrt[3]{xyz}=6\).
Cộng vế với vế các bđt trên rồi rút gọn ta có đpcm.
Áp dụng BĐT Cosi:
\(\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)\)
\(\ge3\left(x+y+z\right)\)
\(\ge x+y+z+2.3\sqrt[3]{xyz}\)
\(=x+y+z+6\)
\(\Rightarrow x^3+y^3+z^3\ge x+y+z\)
Đẳng thức xảy ra khi \(x=y=z=1\)
cho x/a+y/b=1 va xy/ab=-2 tinh x3/a3+y3/b3
cho a,b > 0. Biết phương trình \(x^3-x^2+3ax-b=0\) có 3 nghiệm (không nhất thiết phân biệt ). Cmr:
\(\frac{a^3}{b^3}+27b\ge28\)
Giả sử phương trình có 3 nghiệm x1;x2;x3
Theo hệ thức viet:
\(\left\{{}\begin{matrix}x_1+x_2+x_3=1\\x_1.x_2+x_2.x_3+x_3.x_1=3a\\x_1.x_2.x_3=b\end{matrix}\right.\)
Mà a;b >0=>Phương trình có 3 nghiệm dương
bđt cần cm trở thành:
\(\left(\frac{1}{3x_1}+\frac{1}{3x_2}+\frac{1}{3x_3}\right)^3+27x_1.x_2.x_3\ge28\)
\(VT\ge\frac{1}{x_1x_2x_3}+27x_1x_2x_3=\frac{1}{27x_1x_2x_3}+27x_1x_2x_3+\frac{26}{27x_1x_2x_3}\ge2+26=28\left(x_1x_2x_3\le\frac{\left(x_1+x_2+x_3\right)^3}{27}=\frac{1}{27}\right)\)
Dấu bằng xảy ra khi \(a=\frac{1}{9};b=\frac{1}{27}\)