Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
29 tháng 9 2023 lúc 23:59

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

Hà Quỳnh
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2020 lúc 21:20

Câu 1:

Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))

Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)

Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)

\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)

Bài 2:

Bạn tham khảo ở đây:

Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến

nguyen truong
Xem chi tiết
Hoàng Tử Hà
16 tháng 11 2019 lúc 20:15

Gọi ptđt MN là y= ax+b (d)

\(M,N\in\left(d\right)\Rightarrow\left\{{}\begin{matrix}\frac{1}{3}a+b=\frac{1}{2}\\\frac{4}{3}a+b=\frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-\frac{1}{6}\end{matrix}\right.\Rightarrow y=2x-\frac{1}{6}\)

PTHĐGĐ:

\(2.0-\frac{1}{6}=y\Rightarrow y=-\frac{1}{6}\)

Vậy \(I\left(0;-\frac{1}{6}\right)\)

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:42

a) Gọi \(M\left( {a;b} \right) \Rightarrow \overrightarrow {AM}  = \left( {a - 2;b - 3} \right)\)

Tọa độ vecto \(\overrightarrow {BC}  = \left( {4; - 2} \right)\)

Để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC}  \Leftrightarrow \left\{ \begin{array}{l}a - 2 = 4\\b - 3 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 1\end{array} \right.\)

Vậy để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC} \) thì tọa độ điểm M là:\(M\left( {6;1} \right)\)

b) Gọi \(N\left( {x,y} \right) \Rightarrow \overrightarrow {NC}  = \left( {3 - x, - 1 - y} \right)\)và \(\overrightarrow {AN}  = \left( {x - 2,y - 3} \right)\)

Do N là trung điểm AC nên \(\overrightarrow {AN}  = \overrightarrow {NC}  \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3 - x\\y - 3 =  - 1 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = 1\end{array} \right.\) . Vậy \(N\left( {\frac{5}{2},1} \right)\)

Ta có: \(\overrightarrow {BN} {\rm{ }} = \left( {  \frac{7}{2};0} \right)\) và \(\overrightarrow {NM}  = \left( {\frac{{ 7}}{2};0} \right)\). Vậy \(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \)

~ Kammin Meau ~
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 12 2021 lúc 21:29

Chọn B

phung tuan anh phung tua...
13 tháng 12 2021 lúc 21:29

B

zZz Nguyễn zZz
Xem chi tiết
Diệu Huyền
24 tháng 11 2019 lúc 21:15

Hỏi đáp Toán

Khách vãng lai đã xóa
Trần Như Đức Thiên
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2022 lúc 21:21

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CM}=\left(x+5;y-1\right)\\\overrightarrow{AB}=\left(3;-7\right)\\\overrightarrow{AC}=\left(-4;-2\right)\end{matrix}\right.\) \(\Rightarrow2\overrightarrow{AB}-3\overrightarrow{AC}=\left(18;-8\right)\)

\(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\Leftrightarrow\left\{{}\begin{matrix}x+5=18\\y-1=-8\end{matrix}\right.\) \(\Rightarrow M\left(13;-7\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2018 lúc 10:17

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2020 lúc 22:43

14.

\(\overrightarrow{AB}=\left(-3;10\right)\) nên pt tham số của AB là: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+10t\end{matrix}\right.\)

15.

Do d song song delta nên d nhận \(\left(2;-1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=2t\\y=-4-t\end{matrix}\right.\)

18.

d có vtcp là (2;3) nên d nhận (3;-2) là 1 vtpt

Phương trình d:

\(3\left(x+1\right)-2\left(y-0\right)=0\Leftrightarrow3x-2y+3=0\)

19.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x+2\right)+3\left(y-4\right)=0\Leftrightarrow4x+3y-4=0\)