Tính nhanh:
A=1+2+3+....+20
B=2+4+6+....+22
Tính nhanh:
a)A=1+2+3+....+49+50
b)B=2+4+6+8+...+98+100
a: Số số hạng là:
50-1+1=50(số)
Tổng của dãy là:
\(\dfrac{\left(50+1\right)\cdot50}{2}=1275\)
b: Số số hạng là:
(100-2):2+1=50(số)
Tổng của dãy là:
\(\dfrac{\left(100+2\right)\cdot50}{2}=2550\)
a)A=(50+1).50:2=51.50:2=1275
b)B=(100+2).((100-2):2+1):2=98.50:2=2450
Tính nhanh:A=1*5*6+2*10*12+3*15*18+4*20*24+5*25*30/1*3*5+2*6*10+3*9*15+4*12*20+5*15*25
ta có : (ghi lại đề)
=6+12+18+24+30/3+6+9+12+15
=2*(3/3+6/6+9/9+12/12+15/15)
=2*(1+1+1+1+1)
=2*5=10
chúc main học tốt nhé
Tính nhanh:
a,1/3+3/4+2/3+1/4 b,3/4+3/5+2/8+4/10
c, 1/10+2/10+3/10+4/10+5/10+6/10+7/10+8/10+9/10
a)
`1/3+3/4+2/3+1/4`
`=1/3+2/3+3/4+1/4`
`=1+1`
`=2`
b)
`3/4+3/5+2/8+4/10`
`=3/4+2/8+3/5+4/10`
`=6/8+2/8+6/10+4/10`
`=1+1`
`=2`
c)
`1/10+2/10+3/10+4/10+5/10+6/10+7/10+8/10+9/10`
`=1/10+9/10+2/10+8/10+3/10+7/10+6/10+4/10+5/10`
`=1+1+1+1+5/10`
`=4+5/10`
`=40/10+5/10`
`=45/10=9/2`
a: =1/3+2/3+3/4+1/4
=1+1
=2
b: =3/4+1/4+3/5+2/5
=1+1
=2
c: =(1+2+3+4+5+6+7+8+9)/10
=45/10
=9/2
Tìm x biết:x-1/-27=-3/x-1
Tính nhanh:A=2-2^2+2^3-2^4+2^5-2^6+...+2^2015
1.tính nhanh:
a)3 giờ 15 phút x 4 + 2 giờ 4 phút x 4
b)15 phút 45 giây x 3 - 6 phút 45 giây x 3
a: =4(3h15'+2h4')=4(195'+124')=1276'
b: =3(15'45s-6'45s)=3x9'=27'
Tính nhanh:
A= (1-1/2). (1-1/3). (1-1/4). (1-1/5). (1-1/6). (1-1/7). (1-1/8). (1-1/9)
Ta có: \(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{9}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{8}{9}\)
\(=\dfrac{1}{9}\)
a)Tìm các số a,b,c biết rằng a/2=b/3=c/4 và a+2b+3c=-20
b) Tính tổng: S= 1/2+1/6+1/12+...+1/9900
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$
$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$
$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$
2.
$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
a)Tìm các số a,b,c biết rằng a/2=b/3=c/4 và a+2b+3c=-20
b) Tính tổng: S= 1/2+1/6+1/12+...+1/9900
a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)
b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).
Vậy : \(S=\dfrac{99}{100}.\)
a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)
\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)
b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)
Câu 2: Tính nhanh:
a, 8 x 427 x 3 + 6 x 573 x 4
b, 6 x 1235 x 20 - 5 x 235 x 24
làm theo kiểu lớp 4 nha
a=8x3x6x4x(427+573)
a=8x3x6x4x1000
a=576000
6. Tính nhanh:
a. M = 1 - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 )
* Đây là dạng toán nâng cao lớp 4 nhưng mik cho lên lớp 5.
\(M=1-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)\)
\(=1-\left(\dfrac{3}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)\)
\(=1-\left(\dfrac{7}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)\)
\(=1-\left(\dfrac{15}{16}+\dfrac{1}{32}\right)\)
\(=1-\dfrac{31}{32}=\dfrac{1}{32}\)