Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Quân
Xem chi tiết
Nguyễn Văn Kim
Xem chi tiết
nguyen
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 22:18

Đáp án: B. \(OA = OB = OC\).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2018 lúc 3:15

Hàn Minh Triết
7 tháng 7 2021 lúc 9:41

tham khảo nha

Khách vãng lai đã xóa
Phạm Hồ Thanh Quang
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Cô Hoàng Huyền
28 tháng 8 2016 lúc 16:00

a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)

Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)

Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)