Xác định giá trị của m để các đa thức sau là tam thức bậc hai
a) \(\left( {m + 1} \right){x^2} + 2x + m\)
b) \(m{x^3} + 2{x^2} - x + m\)
c) \( - 5{x^2} + 2x - m + 1\)
\(f\left(x\right)=\left(m^2-1\right)x^3+\left(m-1\right)x^2-2x-1\)Cho đa thức trên tìm giá trị của hằng số m để đa thức có bậc bằng 2
cho biểu thức\(M=\frac{1}{-2x+x^2+1}-\left(\frac{x}{x^2+1}-\frac{1}{x^3-x}\right):\frac{x^2-2x+1}{x+x^3}\)
a, tìm giá trị của x để M xác định
b, Rút gobj biểu thức M
c, tìm giá trị của X để M = -1
a) Tìm tất cả các giá trị của tham số m sao cho pt \(\left(m-1\right)^2-2\left(m+3\right)-m+2=0\) có nghiệm
b) Các giá trị m để tam thức \(f\left(x\right)=x^2-\left(m+2\right)x+8m+1\) đổi dấu 2 lần
c) Cho tam thức bậc hai \(f\left(x\right)=x^2-bx+3\). Với giá trị nào của b thì tam thức f(x) có nghiệm?
Cho phân thức \(M=\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x+1}\right]:\frac{x^2+x}{x^3+x}\)
a) Tìm điều kiện để giá trị của biểu thức xác định
b) tìm giá trị của x để biểu thức bằng 0
c) Tìm x khi giá trị tuyệt đối của M=1
Bài 1. Cho đa thức M= \(2x^2\)+\(5x\)-\(12\)
a.) Xác định bậc, hệ số cao nhất , hệ số tự do của đa thức M
b.)Cho đa thức N=\(x^2\)-\(8x\)-\(1\) .Hãy tính tổng M+N
c.)Tìm đa thức P biết rằng \(P\left(2x-3\right)\)-\(M\)
a: Bậc là 2
Hệ số cao nhất là 2
Hệ số tự do là -12
b: M+N
=2x^2+5x-12+x^2-8x-1
=3x^2-3x-13
Tìm các giá trị của tham số m để các tam thức bậc hai sau có dấu không đổi (không phụ thuộc vào x) :
a) \(f\left(x\right)=2x^2-\left(m+2\right)x+m^2-m-1\)
b) \(f\left(x\right)=\left(m^2-m-1\right)x^2-\left(2m-1\right)x+1\)
a) điều kiện cần và đủ \(\Delta< 0\Rightarrow\left(m+2\right)^2-8\left(m^2-m-1\right)< 0\)
\(\Leftrightarrow-7m^2+12m+12< 0\) \(\Rightarrow\left[{}\begin{matrix}m< \dfrac{6-2\sqrt{30}}{7}\\m>\dfrac{6+2\sqrt{30}}{7}\end{matrix}\right.\)
b) ????
b) Xét \(m^2-m-1=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{5}}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Với \(m=\dfrac{1+\sqrt{5}}{2}\) thay vào phương trình ta có:\(-\sqrt{5}x+1\)
Do \(-\sqrt{5}x+1>0\Leftrightarrow x< \dfrac{1}{\sqrt{5}}\) vì vậy \(m=\dfrac{1+\sqrt{5}}{2}\) không thỏa mãn.
Tương tự với \(m=\dfrac{1-\sqrt{5}}{2}\).
Xét \(m^2-m-1\ne0\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1+\sqrt{5}}{2}\\m\ne\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\).
Có \(\Delta=\left(2m-1\right)^2-4.\left(m^2-m-1\right)=5>0\).
Do vậy tam thức bậc hai luôn có hai nghiệm phân biệt nên dấu của tam thức sẽ phụ thuộc vào x.
Kết luận: Không có giá trị nào thỏa mãn.
Bài 3 :
a) Tìm các giá trị nguyên của n để giá trị của biểu thức \(2n^2-n+2\) chia hết cho giá trị biểu thức 2n + 1
b) Cho đa thức M(x) = \(x^3+x^2-x+a\) với a là một hằng số . Xác định giá trị của a sao cho đa thức M(x) chia hết cho \(\left(x+1\right)^2\)
c) Cho hai đa thức P(x) = \(x^4+3x^3-x^2+ax+b\) và Q(x) = \(x^2+2x-3\) với a , b là hai hằng số . Xác định giá trị của đa thức P(x) chia hết cho đa thức Q(x)
c) Cách 1:
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
b) Áp dụng định lý Bezout ta có:
\(M\left(x\right)\)chia hết cho \(\left(x+1\right)^2\)\(\Leftrightarrow M\left(-1\right)=0\)
\(\Leftrightarrow-1+1+1+a=0\)
\(\Leftrightarrow a=-1\)
Vậy a=-1 thì M(x) chia hết cho \(\left(x+1\right)^2\)
Cho đa thức P = x^4 – 3 (x-1) + x^3 – 2x + x^2 – 1 – 2x^4
Q = -3x^2 + 2x (x+3) + 3x^4 – x(3x^2 +5 ) – 2
a) Thu gọn các đa thức trên rồi xác định hệ số cao nhất , hệ số tự do và tìm bậc của mỗi đa thức
Tìm đa thức M biết M = 3P +Q
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
B4 :
Cho đẳng thức : \(M+\frac{2x^2}{3+2x-x^2}=\frac{2x}{x^2-1}+\frac{4x}{x^3-3x^2-x+3}\)
a) Tìm phân thức M
b) Tìm điều kiện để M đc xác định
c) Tìm các giá trị của x để M có giá trị nguyên
\(M+\frac{2x^2}{\left(3-x\right)\left(x+1\right)}=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}-\frac{2x^2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(3-x\right)}{\left(3-x\right)\left(x-1\right)\text{}\left(x+1\right)}+\frac{4x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}+\frac{2x^2\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{6x-2x^2+4x^2-4x+2x^3-2x^2}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x^3-2x}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
có gì sai sót bạn bỏ qua
Học tốt
b) Tìm điều kiện để M đc xác định
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
để M xác định thì
3 - x ≠ 0 => x ≠ 3
x + 1 ≠ 0 => x ≠ -1
Vậy x ≠ { 3 ; -1 } thì M đc xác định