Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Xuân Tân
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
25 tháng 9 2023 lúc 16:49

Tham khảo:

 

a) Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\\ \Rightarrow \left\{ \begin{array}{l}\cos A = \frac{{{{10}^2} + {{13}^2} - {8^2}}}{{2.10.13}} = \frac{{41}}{{52}} > 0;\\\cos B = \frac{{{8^2} + {{13}^2} - {{10}^2}}}{{2.8.13}} = \frac{{133}}{{208}} > 0\\\cos C = \frac{{{8^2} + {{10}^2} - {{13}^2}}}{{2.8.10}} =  - \frac{1}{{32}} < 0\end{array} \right.\end{array}\)

\( \Rightarrow \widehat C \approx 91,{79^ \circ } > {90^ \circ }\), tam giác ABC có góc C tù.

b) 

+) Áp dụng định lí cosin trong tam giác ACM, ta có:

\(\begin{array}{l}A{M^2} = A{C^2} + C{M^2} - 2.AC.CM.\cos C\\ \Leftrightarrow A{M^2} = {8^2} + {5^2} - 2.8.5.\left( { - \frac{1}{{32}}} \right) = 91,5\\ \Rightarrow AM \approx 9,57\end{array}\)

+) Ta có: \(p = \frac{{8 + 10 + 13}}{2} = 15,5\).

Áp dụng công thức heron, ta có: \(S = \sqrt {p(p - a)(p - b)(p - c)}  = \sqrt {15,5.(15,5 - 8).(15,5 - 10).(15,5 - 13)}  \approx 40\)

+) Áp dụng định lí sin, ta có:

\(\frac{c}{{\sin C}} = 2R \Rightarrow R = \frac{c}{{2\sin C}} = \frac{{13}}{{2.\sin 91,{{79}^ \circ }}} \approx 6,5\)

c) 

Ta có: \(\widehat {BCD} = {180^ \circ } - 91,{79^ \circ } = 88,{21^ \circ }\); \(CD = AC = 8\)

Áp dụng định lí cosin trong tam giác BCD, ta có:

\(\begin{array}{l}B{D^2} = C{D^2} + C{B^2} - 2.CD.CB.\cos \widehat {BCD}\\ \Leftrightarrow B{D^2} = {8^2} + {10^2} - 2.8.10.\cos 88,{21^ \circ } \approx 159\\ \Rightarrow BD \approx 12,6\end{array}\)

Miner Đức
Xem chi tiết
Love Scenario
Xem chi tiết

Gọi \(\widehat{A}:\widehat{B}:\widehat{C}\)lần lượt là a,b,c

Do \(\widehat{A}:\widehat{B}:\widehat{C}=3:4:5\)

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}\)

Mà tổng \(\widehat{A}:\widehat{B}:\widehat{C}=180^o\)(tổng 3 góc trong tam giác)

=>\(\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{3}\\\frac{b}{4}\\\frac{c}{5}\end{cases}}=15\)

\(\Rightarrow\hept{\begin{cases}a=45^o\\b=60^o\\c=75^o\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}\)

MÀ \(\Delta ABC=\Delta A'B'C'\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=\widehat{A'}\\\widehat{B}=\widehat{B'}\\\widehat{C}=\widehat{C'}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{A'=45^o}\\\widehat{B'=60^o}\\\widehat{C'}=75^o\end{cases}}\)

Nguyễn Linh Chi
21 tháng 10 2018 lúc 8:29

Đặt: \(\widehat{A}=3x\Rightarrow\hept{\begin{cases}\widehat{B}=4x\\\widehat{C}=5x\end{cases}}\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow3x+4x+5x=180^o\)

\(\Rightarrow x=15\)

\(\Rightarrow\hept{\begin{cases}\widehat{A'}=\widehat{A}=3x=45^o\\\widehat{B}'=\widehat{B}=4x=60^o\\\widehat{C'}=\widehat{C}=75^o\end{cases}}\)

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 11:23

Vì \(\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\) nên \(\widehat{A}-2\widehat{B}+\widehat{C}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}-2\widehat{B}+\widehat{C}=0^0\left(1\right)\\\widehat{A}+\widehat{B}+\widehat{C}=180^0\left(2\right)\end{matrix}\right.\)

Trừ \(\left(2\right)\) cho \(\left(1\right)\), ta được \(3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=120^0\)

Vậy GTLN của \(\widehat{A}\) là \(119^0\) vì \(\widehat{C}>0\)

Nguyễn hữu phước
24 tháng 9 2021 lúc 10:19

$\widehat{ABC}$

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:47

Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)

Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)

Sách Giáo Khoa
Xem chi tiết
Anh Triêt
30 tháng 3 2017 lúc 15:19

Từ định lí cosin a2 = b2 + c2 - 2bc. cosA

ta suy ra cos A = =

=> cosA ≈ 0,8089 => = 360

Tương tự, ta tính được ≈ 1060 28’ ; ≈ 370 32’.

Trần Thị Vân Ngọc
Xem chi tiết
QuocDat
15 tháng 10 2017 lúc 19:53

a)

  A B C 100*

=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o

100o + \(\widehat{B}+\widehat{C}\) = 180o

\(\widehat{B}+\widehat{C}\) = 180o - 100o

\(\widehat{B}+\widehat{C}\) = 80o

Góc B = (80o+50o):2 = 65o

=> \(\widehat{C}\) = 65o - 50o = 15o

Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o

b)

  80* A B C

Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o

\(\widehat{3A}+\widehat{2C}\) = 180o - 80o

\(\widehat{3A}+\widehat{2C}\) = 100o

=> \(\widehat{A}\) = 100o:(3+2).3 = 60o

\(\widehat{C}\) = 100o - 60o = 40o

Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:50

a) Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

c) 

+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)