3 (x+7)-13 = 17
1, (2+4+6+...+100)
2, 10-(3-x)=-10+17
3, 17-(3+x)=2-(7-8)
4, (5+x)-(15-31)=-20
5, 17-(3+x)+15-3=2
6, (41-x)-(13-17)=40-50
7, -(52-x)+(40-42)=-57+13
a,-8/3+7/5+-71/15<x<-13/7+19/14+-7/2
b,-19/6+-15/2+11/3<x<-5/4+19/12+-10/3
c,-6/7+3/35<x<-2/5+3/7
d,x=3/4+1/-12
e,x/14=1/7+-3/14
f,11/18+13/6=85/x
g,8/17+5/17<x/17<6/17+9/17
Tính bằng cách thuận tiên nhất:
1):(3/4 x 5/97 + 1/9 x 13/47) x (1/5 - 7/25 x 5/7)
2): 8/17 x 4/15 + 8/17 x 22/15 - 8/15 x 9/17
3): 2021/2 x 1/3 + 4042/4 x 1/5 + 6063/3 x 22/15
4); 4/7 x 2/13 + 8/13 :7/4 + 4/7 : 13/2 + 4/7 x 1/13
5): 2022 x 2021 - 1/ 2021 + 2022 x 2020
6): 18 x 123 + 9 x 4567 x 2 + 3 x 5310 x 6 / (2 + 4 + 6 + 8 + ...+20 + 22) + 48
7): A= 2021 x 2021 x 202020 - 2020 x 2020 x 20212021 / 2020 x 20192019
1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)
\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)
=0
2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)
\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)
\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)
3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)
\(=\dfrac{52546}{15}\)
4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)
\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)
\(=\dfrac{4}{7}\)
Tính nhanh: (-19/9/17 + 18/4/17):(11/7 + 11/13 + 2/3/4 - 2,2)x(0.75 -0.6+3/7+3/13)
=43/306:599/105x1473/1820
=1505/61098x1473/1820
=0.01993613035
1. -2/9 x 15/17 + -2/9 x 2/17
2. -5/3 x 6/5 + -7/9 x 3/10
3. 15/20 x 7/5 + -9/7 x -6/4
4.-25/13 x 5/19 + -25/13 x 14/19
5 -7/13 x 13/5 + -9/7 x 5/3
`1, -2/9 xx 15/17 + (-2/9) xx 2/17`
`= -2/9 xx (15/17 + 2/17)`
`= -2/9 xx 17/17`
`=-2/9xx1`
`=-2/9`
__
`-5/3 xx 6/5 + (-7/9) xx 3/10`
`= -30/15 + (-21/90)`
`= -2 + (-7/30)`
`=-60/30 +(-7/30)`
`=-67/30`
__
`15/20 xx 7/5 + (-9/7) xx (-6/4)`
`=3/4 xx7/5 + (-9/7) xx(-6/4)`
`= 21/20 + 54/28`
`= 21/20 + 27/14`
`=417/140`
__
`-25/13 xx 5/19 + (-25/13) xx 14/19`
`=-25/13 xx (5/19 +14/19)`
`=-25/13 xx 19/19`
`= -25/13 xx 1`
`=-25/13`
__
`-7/13 xx 13/5 + (-9/7) xx 5/3`
`=-7/5 +(-15/7)`
`=-124/35`
a) x-2=-6 2) -5x - (-3) =13 3)15-(x-7)=-21
b)2x-(-17)=15 5) |x-3| -7 =13
a) \(x-2=-6\)
\(x=-6+2\)
\(x=-4\)
2) \(-5x-\left(-3\right)=13\)
\(-5x+3=13\)
\(-5x=13-3\)
\(-5x=10\)
\(x=-2\)
3) \(15-\left(x-7\right)=-21\)
\(15-x+7=-21\)
\(22-x=-21\)
\(x=22+21\)
\(x=43\)
b) \(2x-\left(-17\right)=15\)
\(2x+17=15\)
\(2x=15-17\)
\(2x=-2\)
\(x=-1\)
5) \(\left|x-3\right|-7=13\)
\(\left|x-3\right|=20\)
\(\Rightarrow\orbr{\begin{cases}x-3=20\\x-3=-20\end{cases}}\Rightarrow\orbr{\begin{cases}x=23\\x=-17\end{cases}}\)
4 ^ 2 x 4 ^ 17 : 4 ^ 10
8 ^ 12 : 8 ^ 9 x 8 ^ 13
2 ^ 17 x 3 x 7 : 2 ^ 13
Tính một cách hợp lí :
a) -3/8-13/65+3/8
b) (-13/7-4/9)-(-10/7-4/9)
C) 17 1/3 x(-3/7)+3 2/3 x(-3/7)
\(a.\dfrac{-3}{8}-\dfrac{13}{65}+\dfrac{3}{8}=\left(\dfrac{3}{8}-\dfrac{3}{8}\right)-\dfrac{13}{65}=-\dfrac{13}{65}\)
\(b.\left(\dfrac{-13}{7}-\dfrac{4}{9}\right)-\left(-\dfrac{10}{7}-\dfrac{4}{9}\right)=\dfrac{-13}{7}-\dfrac{4}{9}+\dfrac{10}{7}+\dfrac{4}{9}\\ =\left(\dfrac{-13}{7}+\dfrac{10}{7}\right)+\left(\dfrac{4}{9}-\dfrac{4}{9}\right)=-\dfrac{3}{7}\)
\(c.17\dfrac{1}{3}\cdot\left(\dfrac{-3}{7}\right)+3\dfrac{2}{3}\cdot\left(\dfrac{-3}{7}\right)=\dfrac{-3}{7}\cdot\left(17\dfrac{1}{3}+3\dfrac{2}{3}\right)\\ =\dfrac{-3}{7}\cdot\left(\dfrac{52}{3}+\dfrac{11}{3}\right)=\dfrac{-3}{7}\cdot21=-9\)
Bài 1:
a,11/125-17/18-5/7+4/9+17/14
b,(7+7/5-2/3)-(4+4/5+3/8)+(3-3/5+2/3+3/8)
c,-13/25.5/32.23/-13.(-64)
Bài 2:
a,11/13-(3/42-x)=-(13/28-11/13)
b,x2/3x+5/7=3/10
c,x-21/13x+1/3=-2/3
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Bài 1 Tính
a, 12/21-3/7+-2/3
b,(-25/13)+(-9/17)+12/13+(-25/17)
c,5/9.7/13+5/9.9/13-5/9.3/13
Bài 2 tìm x
a,2/3x+5/7=3/10
b,x:5/2-1/2=-2/3
c,|x-3/4|-1/2=0
Bài 1 :
a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)
b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)
\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)
\(=-1+\left(-2\right)=-1-2=-3\)
c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)
Bài 2 :
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)
=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)
b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)
=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)
=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)
c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>