Tính bằng cách thuận tiên nhất:
1):(3/4 x 5/97 + 1/9 x 13/47) x (1/5 - 7/25 x 5/7)
2): 8/17 x 4/15 + 8/17 x 22/15 - 8/15 x 9/17
3): 2021/2 x 1/3 + 4042/4 x 1/5 + 6063/3 x 22/15
4); 4/7 x 2/13 + 8/13 :7/4 + 4/7 : 13/2 + 4/7 x 1/13
5): 2022 x 2021 - 1/ 2021 + 2022 x 2020
6): 18 x 123 + 9 x 4567 x 2 + 3 x 5310 x 6 / (2 + 4 + 6 + 8 + ...+20 + 22) + 48
7): A= 2021 x 2021 x 202020 - 2020 x 2020 x 20212021 / 2020 x 20192019
1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)
\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)
=0
2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)
\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)
\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)
3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)
\(=\dfrac{52546}{15}\)
4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)
\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)
\(=\dfrac{4}{7}\)