Lấy b = a trong các công thức cộng, hãy tìm công thức tính: \(\sin 2a;\cos 2a;\tan 2a\).
a) Từ các công thức cộng \(\cos \left( {a + b} \right)\) và \(\cos \left( {a - b} \right)\), hãy tìm: \(\cos a\cos b;\sin a\sin b\).
b) Từ các công thức cộng \(\sin \left( {a + b} \right)\) và \(\sin \left( {a - b} \right)\), hãy tìm: \(\sin a\cos b\).
a) Ta có: \(\cos \left( {a + b} \right) + \cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b + \cos a\cos b - \sin a\sin b = 2\cos a\cos b\)
Suy ra: \(\cos a\cos b = \frac{1}{2}\left[ {\cos \left( {a - b} \right) + \cos \left( {a + b} \right)} \right]\;\)
b) Ta có: \(\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = \sin a\cos b + \cos a\sin b + \sin a\cos b - \cos a\sin b = 2\sin a\cos b\)
Suy ra: \(\sin a\cos b = \frac{1}{2}\left[ {\sin \left( {a - b} \right) + \sin \left( {a + b} \right)} \right]\)
Tính \(\sin 2a,\,\,\cos 2a,\,\,\tan 2a\) bằng cách thay \(b = a\) trong công thức cộng.
\(\sin 2a = \sin \left( {a + a} \right) = \sin a.\cos a + \cos a.\sin a = 2\sin a\cos a\)
\(\begin{array}{l}\cos 2a = \cos \left( {a + a} \right) = \cos a.\cos a - \sin a.\sin a = {\cos ^2}a - {\sin ^2}a\\\tan 2a = \tan \left( {a + a} \right) = \frac{{\tan a + \tan a}}{{1 - \tan a.\tan a}} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\end{array}\)
a) Sử dụng công thức cộng đối với sin và côsin, hãy tính \(\tan \left( {a + b} \right)\) theo tan a và tan b khi các biểu thức đều có nghĩa
b) Khi các biểu thức đều có nghĩa, hãy tính \(\tan \left( {a - b} \right)\) bằng cách biến đổi \(\tan \left( {a - b} \right) = \tan \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức \(\tan \left( {a + b} \right)\) có được ở câu a.
a) \(\tan \left( {a + b} \right) = \frac{{\sin \left( {a + b} \right)}}{{\cos \left( {a + b} \right)}} = \frac{{\sin a.\cos b + \cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\)
\(\begin{array}{l} = \frac{{\sin a.\cos b + \cos a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} = \frac{{\sin a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} + \frac{{\cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\\ = \frac{{\frac{{\sin a.\cos b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} + \frac{{\frac{{\cos a.\sin b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} = \frac{{\tan a}}{{1 - \tan a.\tan b}} + \frac{{\tan b}}{{1 - \tan a.\tan b}}\\ = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\end{array}\)
\( \Rightarrow \tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\)
b)
\(\tan \left( {a - b} \right) = \tan \left( {a + \left( { - b} \right)} \right) = \frac{{\tan a + \tan \left( { - b} \right)}}{{1 - \tan a.\tan \left( { - b} \right)}} = \frac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)
Em hãy lập công thức tính Tổng cộng số ca ngày tại ô tính C10 và cho biết khi sao chép công thức này đến ô tính D10 thì:
a) Địa chỉ cột của các ô tính trong công thức thay đổi như thế nào? Tại sao?
b) Địa chỉ hàng của các ô tính trong công thức có thay đổi hay không? Tại sao?
Tham khảo!
– Công thức tính tổng cộng số ca ngày tại ô C10: =SUM(C4:C9)
– Khi sao chép đến ô D10 thì:
+ Địa chỉ cột của ô tính trong công thức thay đổi từ C thành D vì công thức đang tính tổng số ca đêm ở cột D.
+ Địa chỉ hàng không đổi vì sự thay đổi này đảm bảo tính tổng các giá trị từ ô D4 đến D9.
Từ công thức cộng, hãy tính tổng và hiệu của:
a) \(\cos \left( {\alpha - b} \right)\) và \(\cos \left( {\alpha + \beta } \right)\);
b) \(\sin \left( {\alpha - \beta } \right)\)và \(\sin \left( {\alpha + \beta } \right)\).
a,
\(\begin{array}{l}\cos \left( {\alpha - b} \right) + \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta + \cos \alpha \cos \beta - \sin \alpha sin\beta \\ = 2\cos \alpha \cos \beta \end{array}\)
\(\begin{array}{l}\cos \left( {\alpha - b} \right) - \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta - \cos \alpha \cos \beta + \sin \alpha sin\beta \\ = 2\sin \alpha sin\beta \end{array}\)
b,
\(\begin{array}{l}\sin \left( {\alpha - \beta } \right) - \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta - \sin \alpha \cos \beta - \cos \alpha sin\beta \\ = - 2\cos \alpha sin\beta \end{array}\)
\(\begin{array}{l}\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta + \sin \alpha \cos \beta + \cos \alpha sin\beta \\ = 2\sin \alpha \cos \beta \end{array}\)
a) Quan sát Hình 1.19, tìm các nghiệm của phương trình đã cho trong nửa khoảng \(\left[ {0;2\pi } \right)\)
b) Dựa vào tính tuần hoàn của hàm số sin, hãy viết công thức nghiệm của phương trình đã cho
a) Từ Hình 1.19, ta thấy đường thẳng \(y = \frac{1}{2}\) cắt đường tròn tại 2 điểm M, M’. Ta có nghiệm của phương trình là: \(\frac{\pi }{6}, - \frac{{5\pi }}{6}\)
b) Vì hàm số \(\sin x\) tuần hoàn với chu kỳ là \(2\pi \), ta có công thức nghiệm của phương trình là: \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \pi - \frac{\pi }{6} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\)
Câu 1 Nêu cú pháp các câu lệnh tính tổng và tính trung bình cộng bằng hàm ?
Câu 2 Vì sao em nên sử dụng địa chỉ ô trong công thức ?
Câu 3 Dựa vào quy tắc viết công thức trong trang tính hãy chuyển các công thức toán học ?
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
Cho Các công thức hoá học cho dưới đây:
Na2SO4 ; Ba2O ; CaCl2 ; Al(OH)2
a) Công thức hoá học nào viết đúng? Công thức hoá học nào viết sai?
Sửa lại các công thức đó viết sai đó ?
b) Tính hóa trị của Na trong công thức Na2O.
(Cho biết: H = 1; S = 32; O = 16; K= 39; P = 31; Ca = 40; Al = 27)
a. Sai:
- Ba2O: BaO
- Al(OH)2: Al(OH)3
b. Na(I)
a. không cần trình bày nhé:
b. Ta có: \(\overset{\left(x\right)}{Na_2}\overset{\left(II\right)}{O}\)
Theo tính chất hóa trị, ta có:
x . 2 = II . 1
=> x = I
Vậy hóa trị của Na là (I)