Vẽ tam giác ABC vuông tại A có AB = 4 cm, BC = 6 cm.
cho tam giác ABC vuông tại A . Có AB bằng 6 cm. AC bằng 8 cm. a tính độ dài cạnh BC và chu vi tam giác ABC . Đường phân giác của góc B cắt AC tại D .Vẽ DH vuông góc BC . [ H thuộc BC ]. CM tam giác ABD = tam giác HBD c CM DA < DC . có vẽ hình nha mọi người
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
cho tam giác ABC vuông tại A có AB = 6 cm BC = 10 cm vẽ đường cao AH của tam giác ABC( H thuộc BC )
1 cm tam giác ABC đồng dạng tam giác hba
2 cm AB bình = BC.BH áp dụng tính HB
3 tia phân giác của góc B cắt AC tại K cmr AK.AC=AH.KC
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có \(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
2: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
3: Xét ΔBAC có BK là đường phân giác
nên \(\dfrac{AK}{KC}=\dfrac{AB}{BC}\)
mà \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
nên \(\dfrac{AK}{KC}=\dfrac{BH}{AB}\left(1\right)\)
Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\)
Do đó: ΔAHC\(\sim\)ΔBHA
Suy ra: \(\dfrac{AC}{AB}=\dfrac{AH}{BH}\)
=>BH/AH=AB/AC
hay \(\dfrac{BH}{AB}=\dfrac{AH}{AC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AK}{KC}=\dfrac{AH}{AC}\)
hay \(AK\cdot AC=AH\cdot KC\)
Bài toán 4: Cho tam giác ABC vuông tại A, có AB = 21 cm, AC = 28 cm. Tính BC (vẽ hình). Bài toán 5: Cho tam giác MNO vuông tại O, có MN = 55 cm, NO = 44 cm. Tính OM (vẽ hình)
Bài 4 :
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=35cm\)
Bài 5 :
Theo định lí Pytago tam giác MNO vuông tại O
\(OM=\sqrt{MN^2-ON^2}=33cm\)
Bài toán 4: Cho tam giác ABC vuông tại A, có AB = 21 cm, AC = 28 cm. Tính BC (vẽ hình). Bài toán 5: Cho tam giác MNO vuông tại O, có MN = 55 cm, NO = 44 cm. Tính OM (vẽ hình).
Bài 4:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{21^2+28^2}=35\left(cm\right)\)
Bài 5:
\(OM=\sqrt{55^2-44^2}=33\left(cm\right)\)
Cho tam ABC vuông tại A có AB=6, AC=8. a, tính độ dài cạnh BC. b, đương qhan giác góc B cắt AC tại D vẽ DH vuông góc BC (H thuộc BC. Cm tam giác ABD=HBD. c, CM DA<D
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:
\(\widehat{BAD}=\widehat{BHD}=90^0\)
\(BD\) chung
\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)
\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)
c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)
Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))
\(\Rightarrow DA< DC\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AC^2+AB^2}=10cm\)
b, Xét tam giác BAD và tam giác BHD có
BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900
Vậy tam giác BAD = tam giác BHD ( ch-gn)
cho tam giác ABC cân tại A . Vẽ AH vuông góc BC . a, CM tam giác AHB = tam giác AHC . b, Vẽ HM vuông góc AB , HN vuông góc AC . CM tam giác AMN cân . c, CM MN // BC . Có vẽ hình nha mọi người
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Vẽ đường cao AH.
a) Chứng minh HBAABC.
b) Tính BC, AH.
c) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
Mình cần gấp ạ....
1)Cho tam giác ABC cân tại A có AB=6 cm,BC=4 cm.Tính các góc trong tam giác ABC.
2)Cho tam giác ABC vuông tại A có góc B=50 độ,BC=5 cm.Ở phía ngoài tam giác ABC,vẽ tam giác vuông ADC có góc CAD=35 độ.Tính chu vi tam giác ABC và chu vi tam giác ADC
1. cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D. Vẽ AH vuông góc với BC tại H. So sánh HC và HD
3. cho tam giác ABC có góc B,C nhọn. Vẽ AH vuông góc với BC tại H. cm: AB+AC > 2AH
4. cho tam giác ABC nhọn. Vẽ BC vuông góc với AC tại D, vẽ CE vuông góc với AB tại E. cm: BC+CE < AB+AC
giải giúp mik với!!!! -_- "_" "_"