So sánh:
a) 12,26 và 12,(24); b) 31,3(5) và 29,9(8)
BÀI 1 SO SÁNH:A,11/12 VÀ 23/24 B,3/-20 VÀ -7/12 BÀI 2:2/5-3/4+/12 7/-8-5/12+1/6
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
So sánh:
a) 16/9 và 24/13 b) 27/82 và 26/75
a) Ta có:
\(\dfrac{16}{9}\)=\(\dfrac{48}{27}\) \(\dfrac{24}{13}=\dfrac{48}{26}\)
Vì 27>26
➝\(\dfrac{48}{27}>\dfrac{48}{26}hay\dfrac{16}{9}>\dfrac{24}{13}\)
So sánh:
a) 16/9 và 24/13
Ta có \(\dfrac{16}{9}=\dfrac{208}{117}\) và \(\dfrac{24}{13}=\) \(\dfrac{216}{117}\)
\(\Rightarrow\dfrac{216}{117}>\dfrac{208}{117}\Rightarrow\dfrac{24}{13}>\dfrac{16}{9}\)
b) 27/82 và 26/75
Ta có \(\dfrac{27}{82}\approx0,33\) và \(\dfrac{26}{75}\approx0,35\)
\(\Rightarrow9,35>0,33\Rightarrow\dfrac{26}{75}>\dfrac{27}{82}\)
a) Ta có: \(\dfrac{16}{9}=\dfrac{16\cdot13}{9\cdot13}=\dfrac{208}{117}\)
\(\dfrac{24}{13}=\dfrac{24\cdot9}{13\cdot9}=\dfrac{216}{117}\)
mà \(\dfrac{208}{117}< \dfrac{216}{117}\)
nên \(\dfrac{16}{9}< \dfrac{24}{13}\)
So sánh:
a, \(\left(\dfrac{1}{24}\right)^9\)và \(\left(\dfrac{1}{83}\right)^{13}\)
c, \(\dfrac{1}{5^{199}}\)và\(\dfrac{1}{3^{300}}\)
a) Vì \(\dfrac{1}{24}< \dfrac{1}{83}\)
⇒ \(\dfrac{1}{24^9}>\dfrac{1}{83^{13}}\)
a) \(\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{27}\right)^9=\dfrac{1}{3^{27}}\)
\(\left(\dfrac{1}{83}\right)^{13}< \left(\dfrac{1}{81}\right)^{13}=\dfrac{1}{3^{52}}\)
Mà \(\dfrac{1}{3^{27}}>\dfrac{1}{3^{52}}\)
\(\Rightarrow\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{83}\right)^{13}\)
b) \(3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\)
Mà \(25^{100}< 27^{100}\)
\(\Rightarrow5^{199}< 3^{300}\)
\(\Rightarrow\dfrac{1}{5^{199}}>\dfrac{1}{3^{300}}\)
\(a,\left(\dfrac{1}{24}\right)^9=\dfrac{1}{24^9};\left(\dfrac{1}{83}\right)^{13}=\dfrac{1}{83^{13}};24^9< 83^{13}\left(24< 83;9< 13\right)\\ \Rightarrow\dfrac{1}{24^9}< \dfrac{1}{83^{13}}\Rightarrow\left(\dfrac{1}{24}\right)^9< \left(\dfrac{1}{83}\right)^{13}\\ b,3^{300}=27^{100}>25^{100}=5^{200}>5^{199}\\ \Rightarrow\dfrac{1}{3^{300}}< \dfrac{1}{5^{199}}\)
So sánh:A=10^11-1/10^12-1 và B=10^10-1/10^11-1
So sánh 9^12,26^8
\(9^{12}=\left(3^2\right)^{12}=3^{24}=\left(3^3\right)^8=27^8>26^8\)
Có 9^12=(3^2)^12=3^24=3^3.8=(3^3)^8=27^8
Ma 27^8>36^8 suy ra 9^12>26^8
Vay 9^12>26^8
Bài 5:So sánh (không dùng bảng số hay máy tính bỏ túi)
a. 2 và √2+ 1 b. 1 và √3–1 c. 2√31và 10 d. -3.√11và -12
Bài 6 : So sánh
:a/ 15 và √200
b/ 27 và 9 √5
c/ -24 và -6 √15
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
So sánh:a)a,b5+b, 27và a,24+b,b7
b)4a,bc+15,04+66,63 và 1a,77+64,b9+33,9c
So sánh:a)9920 và 999910 B) 128.912 và 1816
\(a)\) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{\text{ }10}\)
Vì \(9801< 9999\)nên \(9801^{10}< 9999^{10}\)
Hay \(99^{20}< 9999^{10}\)
Vậy 9920<999910
So Sánh:
A=\(\dfrac{10^{11}-1}{10^{12}-1}\) và B=\(\dfrac{10^{10}+1}{10^{11}+1}\)
C=\(\dfrac{2005^{2005}+1}{2005^{2006}+1}\) và D=\(\dfrac{2005^{2004}+1}{2005^{2005}+1}\)