lập mệnh đề phủ định của mệnh đề ∃x ∈R,x2+2x+5
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ R: 3x = x2 + 1
D: “∃ x ∈ R: 3x = x2 + 1”
D− : “∀ x ∈ R ; 3x ≠ x2 + 1”
D− sai vì với
D− thỏa mãn:
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:
a) \(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)
b) \(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)
c) \(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)
d) \(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)
a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).
b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”
Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} > 2.2 - 1\) hay \(4 > 3\) (luôn đúng).
c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).
d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.
Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.
Cho mệnh đề A: "∀x ∈ R: x ≥ 2 ⇒ x2 ≥ 4". Mệnh đề phủ định của mệnh đề A: "∀x ∈ R: x ≥ 2 ⇒ x2 ≥ 4" là:
Phát biểu thành lời, xét tính đúng sai và lập mệnh đề phủ định của các mệnh đề sau:
a/ ∃ x ∈ R : x2 = -1
b/∀ x ∈ R : x2 +x +2 ≠0
giup mình voi . Mình cần gấp
Lời giải:
a. Mệnh đề sai, vì $x^2\geq 0>-1$ với mọi $x\in\mathbb{R}$ theo tính chất bình phương 1 sosos.
Mệnh đề phủ định: $\forall x\in\mathbb{R}, x^2\neq -1$
b. Mệnh đề đúng, vì $x^2+x+2=(x+0,5)^2+1,75>0$ với mọi $x\in\mathbb{R}$ nên $x^2+x+2\neq 0$ với mọi $x\in\mathbb{R}$
Mệnh đề phủ định: $\exists x\in\mathbb{R}| x^2+x+2=0$
Phủ định của mệnh đề “ ∃x
∈ R, x2 + 2x + 5 là số nguyên tố” là
A. ∀x ∈ R , x2 + 2x + 5 là hợp số
B. ∃x ∈ R , x2 + 2x + 5 là hợp số
C. ∀x ∉ R , x2 + 2x + 5 là hợp số
D. ∃x ∈ R , x2 + 2x + 5 là số thực
Đáp án: A
Phủ định của ∃x ∈ R là ∀x ∈ R . Phủ định của x2 + 2x + 5 là số nguyên tố là x2 + 2x + 5 là hợp số.
Mệnh đề P ( x ) : " ∀ x ∈ R , x 2 − x + 7 < 0 " . Phủ định của mệnh đề P là:
A. ∃ x ∈ R , x 2 − x + 7 > 0
B. ∀ x ∈ R , x 2 − x + 7 > 0
C. ∀ x ∉ R , x 2 − x + 7 ≥ 0
D. ∃ x ∈ R , x 2 − x + 7 ≥ 0
Đáp án D
Phủ định của mệnh đề P là P ( x ) :" ∃ x ∈ R , x 2 − x + 7 ≥ 0 "
Cho mênh đề “ ∀ x ∈ ℝ , x 2 + x ≥ − 1 4 ”. Lập mệnh đề phủ định của mệnh đề A và xét tính đúng sai của nó
A. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề đúng
B. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≤ − 1 4 " Đây là mệnh đề đúng
C. A ¯ : " ∃ x ∈ ℝ , x 2 + x < − 1 4 " Đây là mệnh đề đúng
D. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề sai
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
B: “∃ x ∈ Q : x2 = 2”.
B− : “∀ x ∈ Q : x2 ≠ 2”
B− đúng.
Lưu ý: √2 là số vô tỷ.
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ x ∈ R : x < x + 1
C: “∀ x ∈ R : x < x + 1”.
C− : “∃ x ∈ R: x ≥ x + 1”.
C− sai vì x + 1 luôn lớn hơn x.