Rút gọn
S = \(\sqrt{a+2\sqrt{a-1}}\) + \(\sqrt{a-2\sqrt{a-1}}\)
Với \(1\text{≤}a\text{≤}2\)
2 a. rút gọn biểu C = \(\dfrac{2x^{\text{2}}-x}{\text{x }-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\)
b. Rút gọn biểu thức D = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{\text{a}}-1}\right):\dfrac{\sqrt{\text{a}}+1}{a-2\sqrt{a}+1}\)
Vậy khi rút gọn một biểu thức hửu tỉ và một biểu thức chứa căn có tìm điều kiện xác định không?
\(a,C=\dfrac{2x^2-x-x-1+2-x^2}{x-1}\left(x\ne1\right)\\ C=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\\ b,D=\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\left(a>0;a\ne1\right)\\ D=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
Có
Bài 1 Rút gọn và tính
a, \(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\)với a=7.25;b=3.25
b,\(\sqrt{15\text{a}^2-8\text{a}\sqrt{15}+16}\) với \(a=\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)
c,\(\sqrt{10\text{a}^2-4\text{a}\sqrt{10}+4}\)với \(a=\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
d,\(\sqrt{a^2+2\text{a}\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}v\text{ới}\)\(a=\sqrt{5}\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
Cho biểu thức
A= \(\text{[}1-\frac{\sqrt{x}}{1+\sqrt{x}}\text{]}:\text{[}\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
a, Rút gọn A
b, Tìm x để A<0
a: \(A=\dfrac{1}{\sqrt{x}+1}:\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
b: Để A<0 thì \(\sqrt{x}-2< 0\)
hay 0<x<4
\(\text{Giải pt:}\)\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}=1\)
\(\text{Rút gọn:}\)
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\left(2\le a\le6\right)\)
Cho biểu thức
A=\(\text{[}1-\frac{\sqrt{x}}{1+\sqrt{x}}\text{]}:\text{[}\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
a, Rút gọn A
b, Tìm x để A= \(\frac{1}{2}\)
a) A= (\(\left(\frac{1+\sqrt{x}}{1+\sqrt{x}}-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right)\)
A=\(\left(\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}\right)\)
A= \(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để A = \(\frac{1}{2}\)
thì \(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{1}{2}\)
=> 2\(\sqrt{x}-4\)=\(\sqrt{x}+1\)
=> \(\sqrt{x}=5\)
=> x = 25
Bài 1: cho P= \(\left(\frac{\sqrt{b}}{\sqrt{a}-\sqrt{a-b}}\text{+}\frac{\sqrt{b}}{\sqrt{a}\text{+}\sqrt{a\text{+}b}}\right)\div\left(1\text{+}\frac{\sqrt{a\text{+}b}}{\sqrt{a-b}}\right)\)
a) Rút gọn P
b) Tính P khi a=\(24-2\sqrt{15}\); b=16
Bài 2: \(x\ge0\), cm: \(x^2-3\sqrt{x}\text{+}\frac{5}{2}\)>0
\(\text{Giải phương trình sau:}\)
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}=1\)
\(\text{Rút gọn:}\)
\(\sqrt{a+4\sqrt{a-2}+2}+\sqrt{a-4\sqrt{a-2}+2}\left(2\le a\le a\right)\)
\(\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)=\(\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+2-\sqrt{a-2}=4\) (do2<=a<=4)
1. CHỨNG MINH ĐẲNG THỨC
a. \(\text{[}3+2\sqrt{6}-\sqrt{33}\text{]}\cdot\text{[}\sqrt{22}+\sqrt{6}+4\text{]}=24\)
b. \(\text{[}\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\text{]}\cdot\text{[}15+2\sqrt{6}\text{]}\)
c.\(\text{[}\frac{4}{3}\cdot\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\text{]}\cdot\text{[}\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\text{]}=4\)
d. \(\sqrt{\text{[}1-\sqrt{1989}\text{]}^2}\cdot\sqrt{1990+2\sqrt{1989}}=1988\)
e. \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)với \(a>0;b>0\)và \(a\ne b\)
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)