Tính: \({\left( {\frac{{ - 3}}{4}} \right)^3};{\left( {\frac{1}{2}} \right)^5}\)
a)Tính: \({\left( {\frac{{ - 1}}{2}} \right)^5};{\left( {\frac{{ - 2}}{3}} \right)^4};{\left( { - 2\frac{1}{4}} \right)^3};{\left( { - 0,3} \right)^5};{\left( { - 25,7} \right)^0}\).
b)Tính: \({\left( { - \frac{1}{3}} \right)^2};{\left( { - \frac{1}{3}} \right)^3};{\left( { - \frac{1}{3}} \right)^4};{\left( { - \frac{1}{3}} \right)^5}\).
Hãy rút ra nhận xét về dấu của luỹ thừa với số mũ chẵn và luỹ thừa với số mũ lẻ của một số hữu tỉ âm.
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
Thực hiện phép tính
c) \(\left[\left(\frac{4}{3}\right)^{-3}\left(\frac{3}{4}\right)^6\right]:\left(\frac{3}{2}\right)^6\)
d)\(\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3\left(-2\right)^2\right]:\left[2\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Tính Q, biết:
\(Q=\left(\frac{3}{4}\right)^1+\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+...+\left(\frac{3}{4}\right)^{2016}\)
\(\text{Ta có: }Q=\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+.....+\left(\frac{3}{4}\right)^{2016}\)
\(\Rightarrow\frac{3}{4}Q=\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4+......+\left(\frac{3}{4}\right)^{2017}\)
\(\Rightarrow Q-\frac{3}{4}Q=\frac{3}{4}-\left(\frac{3}{4}\right)^{2017}\)
\(\Rightarrow\frac{1}{4}Q=\frac{3}{4}-\left(\frac{3}{4}\right)^{2017}\)
\(\Rightarrow Q=\text{[}\frac{3}{4}-\left(\frac{3}{4}\right)^{2017}\text{]}.4\)
\(\Rightarrow Q=3-\)
Tính:
a)\([\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3\cdot\left(-2\right)^2]:[2\cdot\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\)
b)\([\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{4}\right)^4]:\left(\frac{3}{2}\right)^6\)
help me!!!!!!!!!!!!!!
\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)
\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)
\(=-\frac{29}{16}:\frac{-29}{16}=1\)
\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)
\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)
\(=\frac{729}{64}:\frac{729}{64}=1\)
\(\frac{\left(\frac{-1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\frac{3}{4}\right)^8-\frac{3}{8}}\)tính giá trị
tính
\(\left[\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3\right]:\left(-\frac{2}{3}\right)^{-3}\)
\(\left[\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3\right]:\left(-\frac{2}{3}\right)^{-3}\)
\(=\frac{9}{16}.\frac{27}{64}:\left(-\frac{27}{8}\right)\)
\(=-\frac{9}{128}\)
[(3/4)-2.(3/4)3]:(-2/3)-3
=[16/9.3/64]:9/4
=1/12:9/4
=1/27
\(\left[\frac{9}{16}.\frac{27}{64}\right]:\frac{-27}{8}\)
\(\frac{243}{1024}:\frac{-27}{8}=\frac{-9}{128}\)
tính:
\(A=\frac{\left(\frac{3}{4}\right)^3+\left(\frac{5}{4}\right)^3-5.\left(\frac{3}{4}-\frac{5}{4}\right)}{\left(-\frac{5}{8}\right)^2+\left(\frac{2}{3}\right)^2-\frac{5}{6}}\)
=> A = \(\frac{\frac{3}{64}+\frac{5}{64}-\frac{5}{2}}{\frac{-5}{64}+\frac{2}{9}-\frac{5}{6}}\)= \(\frac{\frac{1}{8}-\frac{5}{2}}{\frac{83}{576}-\frac{5}{6}}\)= \(\frac{\frac{-19}{8}}{\frac{-397}{576}}\)= \(\frac{1368}{397}\)
Tính \(A=\left(0,25\right)^{-1}.\left(\frac{1}{4}\right)^{-2}.\left(\frac{4}{3}\right)^2.\left(\frac{5}{4}\right)^{-1}.\left(\frac{2}{3}\right)^{-3}\)
\(A=\left(0,25\right)^{-1}.\left(\frac{1}{4}\right)^{-2}.\left(\frac{4}{3}\right)^2.\left(\frac{5}{4}\right)^{-1}.\left(\frac{2}{3}\right)^{-3}\)
\(\Rightarrow A=4^1.4^2.\frac{16}{9}.\frac{4}{5}\frac{27}{8}\)
\(\Rightarrow A=\frac{64}{1}.\frac{16}{9}.\frac{4}{5}.\frac{27}{8}\)
\(\Rightarrow A=\frac{1536}{5}\)
Vậy \(A=\frac{1536}{5}\)
BÀi 1: Thực hiện phép tính ( tính nhanh nếu có thể)
a.\(\left(-\frac{1}{2}\right)-\left(-\frac{3}{5}\right)+\left(-\frac{1}{9}\right)+\frac{1}{71}-\left(-\frac{2}{7}\right)+\frac{4}{35}-\frac{7}{18}\)
b.\(\left(3-\frac{1}{4}+\frac{2}{3}\right)-\left(5-\frac{1}{3}-\frac{6}{5}\right)-\left(6-\frac{7}{4}+\frac{3}{2}\right)\)
c.\(\frac{3}{5}:\left(\frac{-1}{15}-\frac{1}{6}\right)+\frac{3}{5}:\left(\frac{1}{3}-1\frac{1}{15}\right)\)