Rút gọn: x^3 + ( a+b+c)x^2 + (ab + bc + ca)x +abc
rút gọn A=(x+a)(x+b)(x+c) biết a+b=c=6; ab+bc+ca=-7; abc=-60
\(A=\left(x^2+\left(a+b\right)x+ab\right)\left(x+c\right)=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ac\right)x+abc\)
\(A=x^3+6x^2-7x-60\)
Nếu rút gọn thành nhân tử thì:
\(A=x^3-3x^2+9x^2-27x+20x-60=x^2\left(x-3\right)+9x\left(x-3\right)+20\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+9x+20\right)=\left(x-3\right)\left(x^2+4x+5x+20\right)=\left(x-3\right)\left[x\left(x+4\right)+5\left(x+4\right)\right]\)
\(A=\left(x-3\right)\left(x+4\right)\left(x+5\right)\).
Cho P = (x-a)(x-b)(x-c)
a+b+c= 12, ab+bc+ca= 17 , abc= 60
a, Rút gọn P
b, Tính P khi IxI = 3
a,P=(x+a)(x+b)(x+c)
=) P= x3+(a+b+c)x2+(ab+bc+ca)x+abc
Mà a+b+c=12 , ab+bc+ca=17, abc=60
Nên P= x3+12x2+17x+60
Rút gọn:
(x+a)(x+b)(x+c) với
a+b+c = 6
ab+bc+ca=-7
abc=-60
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
bài 3 : Ta có \(A=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy=12\left(x^2+xy+y^2\right)-36xy=12\left(x^2-2xy+y^2\right)\)
\(=12\left(x-y\right)^2=12.12^2=1728\)
Rút gọn các phân thức sau:
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
b) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(x+z\right)^2+\left(z-x\right)^2}\)
a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)
=a+b+c
b:
Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\dfrac{x-y+z}{2}\)
a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
cho a,b,c và x,y,z thỏa ax+by+cz=0. rút gọn A=bc(y-z)^2+ca(z-x)^2+ab(x-y)^2/a^2x^2+b^2y^2+c^2+z^2
Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)
=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)
Thay (2) vào (1) ta được:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)
giúp mình nha
Rút gọn biểu thức A = ( x+a)(x+b)(x+c) biết
a+b+c=6
ab+bc+ca= -7
abc = -60
làm ơn giúp mình thứ 5 mình phải nộp oy
\(A=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)
\(=\left(x^2+ax+bx+ab\right)\left(x+c\right)\)
\(=x^3+ax^2+bx^2+abx+cx^2+acx+bcx+abc\)
\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc\)
Theo bài ra ta có:
\(a+b+c=6\)
\(ab+bc+ca=-7\)
\(abc=-60\)
\(\Rightarrow A=x^3+6x^2-7x-60\)
Câu 3: Rút gọn phân thức : \(\dfrac{\text{x^5 + x^5 +1}}{\text{x^2 + x +1}}\)
a/ x3 –x2 +1 b/ x3+x-1 c/ x3 –x2 –x+1 d/ x3-x+1
Câu 4:Rút gọn :\(\dfrac{\text{a^2 - ab - ac + bc}}{\text{a2 + ab - ac - bc}}\)bằng mấy
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)
Rút gọn
a) x(x+1)(x-1)-(x-1)(x2+x+1)
b) (9x-1)2+(1-5x)2+2(9x-1)(1-5x)
c) (a+b+c)(a2+b2+c2-ab-bc-ca)
a) x (x+1) (x-1) - (x-1) (x2+x+1)= x3 - x2 + x2 - x - x3 + 13
= 1- x