Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Linh
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 19:52

Kéo dài AD và BC cắt nhau tại E

Trong mp (SBC), nối BM kéo dài cắt SE tại F

Trong mp (SAD), nối AF cắt SD tại P

\(\Rightarrow ABMP\) là thiết diện của (ABM) và chóp

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2017 lúc 3:12

Do (MAB) chứa AB // CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N.

Vậy thiết diện của (MAB) với hình chóp là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.

Đáp án B

Pánh Pao Chay
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 16:57

Trong mp (ABCD), nối MN kéo dài lần lượt cắt AD tại F và DC tại G

Trong mp (SAD), nối FE cắt SA tại P

Trong mp (SCD), nối EG cắt SC tại Q

\(\Rightarrow\) Ngũ giác MNQEP là thiết diện của (MNE) và chóp

Minecraftboy01
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 13:47

Gọi (P) là mặt phẳng qua M, song song DE và SC

Gọi O là giao điểm AC, BD \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow\) OM là đường trung bình tam giác SAC

\(\Rightarrow OM||SC\Rightarrow O\in\left(P\right)\)

Trong mp (SBD), gọi F là trung điểm BE \(\Rightarrow OF\) là đường trung bình tam giác BDE

\(\Rightarrow OF||DE\Rightarrow F\in\left(P\right)\)

Trong mp (SBC), qua F kẻ đường thẳng song song SC cắt BC tại G

\(\Rightarrow G\in\left(P\right)\)

Trong mp (ABCD), nối GO kéo dài cắt AD tại H

\(\Rightarrow H\in\left(P\right)\)

\(\Rightarrow\) Thiết diện của (P) và chóp là tứ giác MFGH (và tứ giác này không có điều gì đặc biệt)

Nguyễn Việt Lâm
6 tháng 1 2022 lúc 13:47

undefined

Love Yena
Xem chi tiết
nguyen thi vang
18 tháng 12 2021 lúc 15:44

s A B C D N P I o M

+ Chọn mp (SAC) chứa PN .

Ta có: - (SAC) giao ( BID) = I .

                   * I ∈ SC ⊂ (SAC). 

                   * I ∈ ( BID).

Trong mp ( ABCD) có : AC cắt BD tại O .

=> Giao tuyến là OI.

Cho OI cắt PN tại đâu thì đấy là giao điểm.

 

phú Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 5 2019 lúc 5:29

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE

Hoàng Tử Hà
Xem chi tiết
Akai Haruma
28 tháng 3 2021 lúc 20:45

Lời giải:

Gọi $Q$ là điểm nằm trên $DC$ sao cho $AD\parallel PQ$

Khi đó: $MN\parallel AD\parallel PQ$ nên $Q\in (MNP)$

$(MNPQ)$ chính là thiết diện của hình chóp cắt bởi $(MNP)$
Giờ ta cần tìm diện tích hình thang $MNPQ$

$SA=SD; DB=SC; AB=CD$ nên $\triangle SAB=\triangle SDC$

Tương ứng ta có $MP=NQ$

$MN=\frac{AD}{2}=\frac{3a}{2}$

$PQ=AD=3a$

$\Rightarrow MNPQ$ là hình thang cân.

Áp dụng định lý cos:

$\cos \widehat{SAB}=\frac{SA^2+AB^2-SB^2}{2SA.AB}=\frac{MA^2+AP^2-MP^2}{2MA.AP}$

$\Leftrightarrow \frac{9a^2+9a^2-27a^2}{2.3a.3a}=\frac{\frac{9}{4}a^2+4a^2-MP^2}{2.\frac{3}{2}a.2a}$

$\Rightarrow MP^2=\frac{37}{4}a^2$

$\Rightarrow h_{MNPQ}=\sqrt{MP^2-(\frac{PQ-MN}{2})^2}=\frac{\sqrt{139}}{4}a$

Diện tích thiết diện:

$S=\frac{MN+PQ}{2}.h=\frac{9\sqrt{139}}{16}a^2$

 

 

Ha My
Xem chi tiết