Cho hình chóp S.ABCD, ABCD là hình bình hành đáy là tâm O. M là trung điểm của SB, N thuộc SC sao cho SN=2NC.
Tìm giao
a) (SAC) và (SBD)
b) (DMN) và (SAB); (DMN và (SAD)
c) Tìm thiết diện của (OMN)
d) P là trung điểm của AD/ Tìm giao SA và (MNP)
Cho hình Chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD
a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SAB), (SAB)và (SCD)
b. Trên SC lấy điểm M tùy ý. Tìm giao điểm K của SD và mp (ABM)
c. Tìm thiết diện của hình chóp với mặt phẳng (ABM)
giúp mình với
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N là trung điểm của SB và SD,P thuộc SC sao cho PC<PS. Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(MNP) và (SBD)
c,(MNP) và (SAC)
d,(MNP) và (SAB)
e,(MNP) và (SAD)
f,(MNP) và (ABCD)
Cho hình chóp S ABCD có đáy hình bình hành tâm O, hai điểm M,N lần lượt là trung điểm của SB,SD. Điểm P thuộc SC và không là trung điểm của SC a)tìm giao điểm Q của SA với mp(MNP) b)tìm giao điểm H của AD với mp(MNP c)tìm giao điểm G của AC với mp(MNP) d) chứng minh MQ,AB,GH đồng quy
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho chóp S.ABCD đáy là hình bình hành tâm O. M là điểm trên cạnh SD sao cho SD = 3SM.
a) Tìm giao tuyến (SAC) và (SBD); (SAB) và (SCD)
b) Tìm giao điểm I của BM và (SAC) . Chứng tỏ I là trung điểm của SO
Cho hình chóp SABCD, đáy ABCD là hình bình hành có tâm O và M,N là lần lượt là trung điểm SB,SC.
1/ Tìm giao tuyến (SAC) với (SBD) và (SAB) với (SCD)
2/ Chứng minh ADNM là hình thang và MO // (SAD)
3/ Gọi K là giao điểm của AN và DM. Chứng minh ba điểm S,O,K thẳng hàng
4/ Gọi E trên đường chéo AC sao cho AE=2EC. Chứng minh KE // (SBC)
Cho hình chóp SABCD có đáy ABCD là hình thang, đáy lớn là AD. Gọi M,N,P lần lượt là trung điểm của AB,SA,SD.
a. Tìm giao tuyến của 2 mp (SAB) và (SCD)
b. chứng minh NP // (SBC)
c. tìm giao điểm của SC với mp(MNP)