Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Đức
Xem chi tiết
Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Akai Haruma
26 tháng 1 2021 lúc 13:11

Lời giải:

Gọi biểu thức đã cho là $P$. Đặt $\sqrt{xy}=a; \sqrt{yz}=b$ với $a,b>0$ thì ta cần chứng minh:

$P=\frac{a}{1+b}+\frac{1}{a+b}+\sqrt{\frac{2b}{a+1}}\geq 2$

Áp dụng BĐT AM-GM:

\(\frac{a+1}{2b}.1\leq \left(\frac{\frac{a+1}{2b}+1}{2}\right)^2=(\frac{a+1+2b}{4b})^2\)

\(\Rightarrow \sqrt{\frac{2b}{a+1}}\geq \frac{4b}{a+2b+1}(1)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{1+b}+\frac{1}{a+b}=\frac{a+b+1}{b+1}+\frac{a+b+1}{a+b}-2=(a+b+1)(\frac{1}{b+1}+\frac{1}{a+b})-2\geq \frac{4(a+b+1)}{a+2b+1}-2(2)\)

Từ \((1);(2)\Rightarrow P\geq \frac{4(a+2b+1)}{a+2b+1}-2=2\) (đpcm)

 

 

Dũng Đỗ
Xem chi tiết
Thắng Nguyễn
26 tháng 2 2018 lúc 16:56

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1

Tô Hoài Dung
Xem chi tiết
Thiên An
19 tháng 5 2017 lúc 8:17

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

Anh không biết
Xem chi tiết
Nguyen Tu Le
Xem chi tiết
Đặng Nguyễn Chí Nguyện
17 tháng 12 2021 lúc 14:15

EM KO TÍNH NỔI VÌ MẤY THỨ NÀY ĐÂU !

Khách vãng lai đã xóa
Đặng Nguyễn Chí Nguyện
17 tháng 12 2021 lúc 14:17

GIÚP EM NHÉ

Khách vãng lai đã xóa
Yết Thiên
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 21:31

\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)

Đề sai

Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 21:35

\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)

\(=2\sqrt{x}\)

Nguyễn Võ Tâm Đan
Xem chi tiết
Phạm Thành Đông
7 tháng 3 2021 lúc 20:58

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

Khách vãng lai đã xóa
Phạm Thành Đông
7 tháng 3 2021 lúc 21:03

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
7 tháng 3 2021 lúc 21:31

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{x+\sqrt{yz}}{4}\ge2\sqrt{\frac{x^2}{4}}=x\)

Tượng tự ta có : \(\frac{y^2}{y+\sqrt{xz}}+\frac{y+\sqrt{xz}}{4}\ge y\)

\(\frac{z^2}{z+\sqrt{xy}}+\frac{z+\sqrt{xy}}{4}\ge z\)

Cộng vế với vế của BĐT ta được : 

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}+\frac{x+\sqrt{yz}}{4}+\frac{y+\sqrt{xz}}{4}+\frac{z+\sqrt{xy}}{4}\ge x+y+z\)

\(VT\ge x+y+z-\frac{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{4}\)

mà \(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(VT\ge\frac{4\left(x+y+z\right)-2\left(x+y+z\right)}{4}=\frac{2\left(x+y+z\right)}{4}\)

mà \(x+y+z\ge3\)hay \(VT\ge=\frac{6}{4}=\frac{3}{2}\)

Dấu ''='' xảy ra <=> x = y = z = 1

Khách vãng lai đã xóa
Vương Thị Quỳnh Anh
Xem chi tiết
Thắng Nguyễn
20 tháng 9 2017 lúc 11:19

Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)

\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)

Xảy ra khi \(a=b=c\)

Thiên Đạo Pain
29 tháng 6 2018 lúc 20:50

lý do đặt x,y,z= a,b,c 

chỉ để copy nhanh hơn thôi :))