Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Dũng
Xem chi tiết
ILoveMath
27 tháng 8 2021 lúc 15:50

\(x^3-x^2y+7x-7y=\left(x^3-x^2y\right)+\left(7x-7y\right)=x^2\left(x-y\right)+7\left(x-y\right)=\left(x-y\right)\left(x^2+7\right)\)

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 23:59

\(x^3-x^2y+7x-7y\)

\(=x^2\left(x-y\right)+7\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x^2+7\right)\)

Nguyễn Thanh Thủy
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 10 2021 lúc 16:27

\(x^3-x^2+7x-7=x^2\left(x-1\right)+7\left(x-1\right)=\left(x-1\right)\left(x^2+7\right)\)

Nguyen Minh Ha
Xem chi tiết
o0o I am a studious pers...
18 tháng 6 2016 lúc 15:11

\(12x^2+7x-12=12x^2-5x+12x-12\)

\(=x\left(12x-5\right)+12\left(x-1\right)\)

Đề sai rồi bạn ời

hoàng phương anh
Xem chi tiết
Trần Tuyết Như
2 tháng 8 2016 lúc 21:53

\(12x^2+7x-12=\left(12x^2-9x\right)+\left(16x-12\right)=3x\left(4x-3\right)+4\left(4x-3\right)=\left(3x+4\right)\left(4x-3\right)\)

Trương minh toàn
3 tháng 11 2023 lúc 18:21

Phân tích đa thức sau thành nhân tử 7x^2 +12x+5 

Triệu Việt Hà (Vịt)
Xem chi tiết
Akai Haruma
7 tháng 7 2021 lúc 20:29

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

Akai Haruma
7 tháng 7 2021 lúc 20:34

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

nguyễn thi kim
Xem chi tiết
Trà My
15 tháng 9 2017 lúc 15:08

f)\(x^2-5x-14=x^2-7x+2x-14=x\left(x-7\right)+2\left(x-7\right)=\left(x-7\right)\left(x+2\right)\)

i)\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)

h)\(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-4\right)\left(x-3\right)\)

g)\(x^2+6x+5=x^2+x+5x+5=x\left(x+1\right)+5\left(x+1\right)=\left(x+1\right)\left(x+5\right)\)

Trịnh Thành Công
15 tháng 9 2017 lúc 15:09

f)\(x^2-5x-14=x^2-7x+2x-14\)

                             \(=\left(x+2\right)\left(x-7\right)\)

i)\(x^2-7x+10=x^2-5x-2x+10\)

                              \(=\left(x-2\right)\left(x-5\right)\)

h)\(x^2-7x+12=x^2-4x-3x+12\)

                              \(=\left(x-3\right)\left(x-4\right)\)

g)\(x^2+6x+5=x^2+x+5x+5\)

                           \(=\left(x+5\right)\left(x+1\right)\)

                             

Hoàng Thảo
15 tháng 9 2017 lúc 15:20

f) \(x^2-5x-14\)

\(=x^2-7x+2x-14\)

\(=\left(x^2-7x\right)+\left(2x-14\right)\)

\(=x\left(x-7\right)+2\left(x-7\right)\)

\(=\left(x+2\right)\left(x-7\right)\)

i) \(x^2-7x+10\)

\(=x^2-5x-2x+10\)

\(=\left(x^2-5x\right)-\left(2x-10\right)\)

\(=x\left(x-5\right)-2\left(x-5\right)\)

\(=\left(x-2\right)\left(x-5\right)\)

h) \(x^2-7x+12\)

\(=x^2-3x-4x+12\)

\(=\left(x^2-3x\right)-\left(4x-12\right)\)

\(=x\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-4\right)\left(x-3\right)\)

g) \(x^2+6x+5\)

\(=x^2+x+5x+5\)

\(=\left(x^2+x\right)+\left(5x+5\right)\)

\(=x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(x+5\right)\left(x+1\right)\)

Tiên Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 23:12

Bài 2: 

a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)

b: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

c:\(-6x^2+7x-2\)

\(=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(-3x+2\right)\)

Lấp La Lấp Lánh
15 tháng 10 2021 lúc 23:18

1.

a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

2.

a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)

c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)

3.

b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)

4.

a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

bfc,,
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 0:11

a: Ta có: \(x^2-4y^2-2x-4y\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c: Ta có: \(x^3+2x^2y-x-2y\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 0:16

e: Ta có: \(x^3-4x^2-9x+36\)

\(=x^2\left(x-4\right)-9\left(x-4\right)\)

\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)

f: Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

khoinguyen phan
Xem chi tiết