Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 19:40

a: Xét (O) có

MA,MN là tiếp tuyến

=>MA=MN

mà OA=ON

nên OM là đường trung trực của AN

=>OM\(\perp\)AN(1)

Xét (O) có
ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

=>AN\(\perp\)NB(2)

Từ (1) và (2) suy ra OM//NB

b: Xét ΔMAO vuông tại A và ΔKOB vuông tại O có

AO=OB

\(\widehat{AOM}=\widehat{OBK}\)

Do đó: ΔMAO=ΔKOB

=>MA=KO

Xét tứ giác MAOK có

MA//OK

MA=OK

Do đó: MAOK là hình bình hành

mà \(\widehat{MAO}=90^0\)

nên MAOK là hình chữ nhật

=>KM\(\perp\)xy

 

Nguyễn Khánh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 20:38

1: ΔOMN cân tại O 

mà OA vuông góc MN

nên OA là trung trực của MN

=>AM=AN

góc AMB=góc ANB=1/2*sđ cung AB=90 độ

Xét ΔAMB vuông tại M và ΔANB vuông tại N có

AB chung

AM=AN

=>ΔAMB=ΔANB

=>BM=BN

=>AM,AN là tiếp tuyến của (B;BM)

2: MH^2=AH*HB

=>4*MH^2=4*AH*HB

=>MN^2=4*AH*HB

3: góc MBA=90-60=30 độ

=>góc MBN=60 độ

=>ΔMBN đều

︵✿๖ۣۜTổng tài Lin_Chan...
Xem chi tiết
Xem chi tiết
Trần Thu Hà
19 tháng 10 2023 lúc 19:05
a) Để chứng minh dây BN // OM, ta sử dụng định lý góc tiếp tuyến: Góc NAB = Góc NMB (do AB là tiếp tuyến). Vì OM là đường phân giác góc NMB, nên góc NMO = góc NMB/2. Tương tự, góc BON = góc BAN = góc NMB/2. Do đó, góc NMO = góc BON, suy ra dây BN // OM. b) Đường thẳng vuông góc với AB tại O là đường phân giác góc AOB. Vì MK là đường phân giác góc AMB, nên góc AMK = góc BMO = góc AOB/2. Vì đường thẳng vuông góc với AB tại O cắt đường thẳng BN tại K, nên góc BKO = góc AOB/2. Do đó, góc AMK = góc BKO, suy ra MK ⊥ xy. c) Đường thẳng ON và MK cắt nhau tại S. Vì ON là đường phân giác góc AOB, nên góc ONS = góc OAS = góc AOB/2. Vì MK là đường phân giác góc AMB, nên góc MSK = góc MAK = góc AOB/2. Do đó, góc ONS = góc MSK, suy ra ∆OSM cân tại S.... 
phạm hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 10 2017 lúc 14:21

a,  C K A ^ = C M A ^ = 90 0 => C, K, A, M thuộc đường tròn đường kính AC

b, ∆MBN cân tại B có BA là đường cao, trung tuyến và phân giác

c, ∆BCD có BK ⊥ CD và CNBN nên A là trực tâm của ∆BCD => D,A,M thảng hàng

Ta có ∆DMC vuông tại M có MK là trung tuyến nên ∆KMC cân tại K

=>  K C M ^ = K M C ^

Lại có K B C ^ = O M B ^ nên

K M C ^ + O M B ^ = K C B ^ + K B C ^ = 90 0

Vậy  K M O ^ = 90 0  mà OM là bán kính nên KM là tiếp tuyến của (O)

d, MNKC là hình thoi
 <=> MN = CK và CM = CK

<=> ∆KCM cân

<=>  K B C ^ = 30 0 <=> AM = R

Quỳnh
24 tháng 11 2021 lúc 8:39

DM cũng là đường cao nên CN cũng thế thôi :)))

Khách vãng lai đã xóa
Quỳnh
24 tháng 11 2021 lúc 8:51

à không:)) t nghĩ là tam giác anb nội tiếp đường tròn đk ab nên nó vuông tại n:)))

Khách vãng lai đã xóa
Tung
Xem chi tiết
Vũ Như Mai
12 tháng 12 2016 lúc 17:56

Đề thiếu rồi :(( A đâu?

Tung
12 tháng 12 2016 lúc 19:25

cắt tiếp tuyến tại M của đường tròn tại điểm A.

mình ghi thiếu

Toman_Symbol
Xem chi tiết

Đề bài sai nhiều quá, em kiểm tra lại câu a là ON hay MN, và câu b là ON hay MN?

a.

Ta có: \(KM=KN\) (t/c hai tiếp tuyến cắt nhau)

\(OM=ON=R\)

\(\Rightarrow OK\) là trung trực của MN, hay \(OK\perp MN\)

b.

Có \(\widehat{KMN}=\widehat{KNM}\) (do \(\Delta KMN\) cân tại K)

\(\widehat{KNM}=\widehat{HMN}\) (cùng phụ \(\widehat{HNM}\))

\(\Rightarrow\widehat{KMN}=\widehat{HMN}\)

\(\Rightarrow MN\) là phân giác \(\widehat{HMK}\)

c.

Kéo dài IM và NK cắt nhau tại A

Theo câu ta có \(OK\perp MN\Rightarrow OK||IA\) (cùng vuông góc MN)

Mà O là trung điểm IN \(\Rightarrow K\) là trung điểm AN

Hay \(KA=KN\) (1)

Do \(MH||AN\) (cùng vuông góc IN), áp dụng định lý Talet trong tam giác KIN:

\(\dfrac{IQ}{IK}=\dfrac{QH}{KN}\) (2)

Áp dụng định lý Talet trong tam giác AIK:

\(\dfrac{IQ}{IK}=\dfrac{QM}{KA}\) (3)

(1);(2);(3) \(\Rightarrow QH=QM\)

loading...

Lê Minh Ngọc
Xem chi tiết
nguyễn khắc  p h ú
21 tháng 3 2020 lúc 17:33

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

Khách vãng lai đã xóa
Hà Văn Chín
21 tháng 3 2020 lúc 17:37

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.

Khách vãng lai đã xóa