Phân tích thành nhân tử :
y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2
phân tích đa thức thành nhân tử
\(y\left(x-2z\right)^2+8xyz+x\left(y-2z\right)^2-2z\left(x+y\right)^2\)
phân tích đa thức thành nhân tử
1)bc(b+c)+ca(c-a)-ab(a+b)
2)\(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc\)
3)y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2
4)\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
phân tích đa thức sau thành nhân tử tổng hợp 2x^2+2y^2-x^2z+z-y^2z-2
\(2x^2+2y^2-x^2z+z-y^2z-2\)
\(=\left(2x^2-x^2z\right)+\left(2y^2-y^2z\right)-\left(2-z\right)\)
\(=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)\)
\(=\left(2-z\right)\left(x^2+y^2-1\right)\)
\(2x^2+2y^2-x^2z-y^2z-2=x^2\left(2-z\right)+y^2\left(2-z\right)-\left(2-z\right)=\left(2-z\right)\left(x^2+y^2-1\right)\)
Phân tích các biểu thức sau thành nhân tử:
1) A=\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
2) B=\(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
3) C=\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
4) D=\(2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4a^2c\)
5) \(E=y\left(x-2z\right)^2+8xyz+x\left(y-2z\right)^2-2z\left(x+y\right)^2\)
6)F=\(8x^3\left(y+z\right)-y^3\left(z+2x\right)-z^3\left(2x-y\right)\)
LÀM ĐƯỢC CÂU NÀO THÌ LÀM NHÉ, KO CẦN THIẾT PHẢI LÀM HẾT ĐÂU!
\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)
\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)
\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)
\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)
Phân tích đa thức thành nhân tử:
\(a,x^2-x-y^2+y\)
\(b,x^2+2x+2z-z^2\)
\(a,x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\\---\\b,x^2+2x+2z-z^2\\=(x^2-z^2)+(2x+2z)\\=(x-z)(x+z)+2(x+z)\\=(x+z)(x-z+2)\\\text{#}Toru\)
Lời giải:
a. $x^2-x-y^2+y=(x^2-y^2)-(x-y)=(x-y)(x+y)-(x-y)=(x-y)(x+y-1)$
b. $x^2+2x+2z-z^2=(x^2+2x+1)-(z^2-2z+1)=(x+1)^2-(z-1)^2$
$=(x+1-z+1)(x+1+z-1)=(x-z+2)(x+z)$
\(a,x^2-x-y^2+y\\ =\left(x^2-y^2\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\\ ---\\ b,x^2+2x+2z-z^2\\ =\left(x^2+2x+1\right)-\left(z^2-2z+1\right)\\ =\left(x+1\right)^2-\left(z-1\right)^2\\ =\left[\left(x+1\right)+\left(z-1\right)\right].\left[\left(x+1\right)-\left(z-1\right)\right]\\ =\left(x+z\right)\left(x-z+2\right)\)
\(x^2y+xy^2+x^2z+y^2z+2xyz\)
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ(NHÓM HẠNG TỬ)
=xy ( x + y ) + z ( x^2 + 2xy + y^2 ) = xy ( x + y ) + z ( x + y ) ^ 2 = ( x + y ) ( xy + xz + yz )
phân tích đa thức sau thành nhân tử x^2 y^2 ( y-x) + y^2z^2 (z-y)- x^2 z^2 ( z-x)
\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-x\right)\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left[\left(z-y\right)+\left(y-x\right)\right]\)
\(=x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-x^2z^2\left(z-y\right)-x^2z^2\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2y^2-x^2z^2\right)+\left(z-y\right)\left(y^2z^2-x^2z^2\right)\)
\(=x^2\left(y-x\right)\left(y-z\right)\left(y+z\right)+z^2\left(z-y\right)\left(y-x\right)\left(y+x\right)\)
\(=\left(y-x\right)\left(z-y\right)\left(-x^2y-x^2z+z^2y+z^2x\right)\)
\(=\left(y-x\right)\left(z-y\right)\left[xz\left(z-x\right)+y\left(z-x\right)\left(z+x\right)\right]\)
\(=\left(y-x\right)\left(z-y\right)\left(z-x\right)\left(xy+yz+xz\right)\)
Phân tích đa thức thành nhân tử 4xy(x+y)(x+y+z)(x+z) +y^2z^2
Phân tích đa thức thành nhân tử
\(y\left(x-2z\right)^2+8xyz+x\left(y-2z\right)^2-2z\left(x+y\right)^2\)