CM 25x+46 ko phải là tích của 2 số nguyên liên tiếp với mọi số nguyên x
Co tồn tại x hay ko để 25x+26 là tích 2 số nguyên liên tiếp
TÌm \(x\in Z\)để 25x+46 viết dưới dạng tích 2 số nguyên liên tiếp
Đặt \(a\) và \(a+1\) lần lượt là 2 thừa số của tích hai số nguyên liên tiếp(\(a\inℤ\))
Theo đề bài ta có:
\(25x+46=a\left(a+1\right)\)
\(\Leftrightarrow\left(25x+46\right)a=a^2\left(a+1\right)\)
\(\Leftrightarrow25ax+46a=a^3+a\)
\(\Leftrightarrow25ax+45a=a^3\)
\(\Leftrightarrow5a\left(x+9\right)=a^3\)
\(\Leftrightarrow5\left(x+9\right)=a^2\)
Vậy tập nghiệm \(S=\left\{x\inℤ|x=a^2\div5-9\right\}\left(a^2⋮5\right)\)
a | 0 | 5 | 10 | 15 |
x | -9 | -4 | 11 | 36 |
Biểu diễn x trên đồ thị hàm số: \(x=3a-9\left(đk:x\inℤ,x⋮5\right)\)
P/S: Không hiểu chỗ nào cứ hỏi mình:))
à ko mik lm sai r đợi chút nhé để mik lm lại
1.Chứng minh tích của 2,3,4 số nguyên dương liên tiếp ko là số chính phương.
2.Chứng minh với mọi x thuộc N* thì x^4+2x^3+2x^2+2x+1 ko là số chính phương
Dây là 4 số nguyên dương liên tiếp, còn phần kia tương tự nha
Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2)
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N)
Ta thấy
t² < A = t² + 2t < t² + 2t + 1 = (t+1)²
=> A nằm giữa 2 số chính phương liên tiếp
=> A không phải là số chính phương (đpcm)
a,tìm x:(-1)+(-2)+...+x=-120 b,Số(-3)^20+1 có phải là tích của 2 số nguyên liên tiếp ko
a: =>1+2+...+x=120
=>x(x+1)/2=120
=>x(x+1)=240
=>\(x^2+x-240=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-240\right)=961>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-31}{2}=\dfrac{-32}{2}=-16\left(loại\right)\\x_2=\dfrac{-1+31}{2}=15\left(nhận\right)\end{matrix}\right.\)
Tìm x thuộc z để 25x+46 là tích của 2 số tự nhiên liên tiếp
Cmr với mọi số nguyên tố p thì \(p^3+\frac{p-1}{2}\)không phải là tích của 2 số tự nhiên liên tiếp
#)Giải :
Giả sử \(p^3+\frac{p-1}{2}\) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow p^3+\frac{p-1}{2}=a\left(a+1\right)\Rightarrow2p\left(2p^2+1\right)=\left(2a+1\right)^2+1\)
Nếu \(p=3\Rightarrow p^3+\frac{p-1}{2}=3^3+\frac{3-1}{2}=27+1=28\left(ktm\right)\)
Nếu \(p\ne3\Rightarrow2p^2+1⋮3\Rightarrow\left(2a+1\right)^2+1⋮3\Rightarrow\left(2a+1\right)^2\div3\) dư 2 (mâu thuẫn)
\(\Rightarrowđpcm\)
cái cuối là chia 3 dư 1 chớ sao dư 2 vậy bạn
Số [-3]2016 +1 có phải là tích 2 số nguyên liên tiếp ko ?
Gọi 2 số nguyên liên tiếp là a và a + 1.
Tích của chúng là a.(a + 1)
-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.
-Nếu a = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2+6k+3k+2 chia cho 3 dư 2
--Nếu a = 3k + 2 thì a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2+9k+3k+3 chia cho 3 dư 1
Do đó [-3]2016 +1 ko phải là tích 2 số nguyên liên tiếp
Tích cho mik nha, chúc bạn học tốt
Gọi 2 số nguyên liên tiếp là a và a + 1.
Tích của chúng là a.(a + 1)
-Nếu a = 3k thì a.(a + 1) = 3k.(3k + 1) chia hết cho 3.
-Nếu a = 3k + 1 thì a.(a + 1) = (3k + 1).(3k + 1 + 1) = (3k + 1).(3k + 2) = 3k.(3k + 2) + 1.(3k + 2) = 9k2+6k+3k+2 chia cho 3 dư 2
--Nếu a = 3k + 2 thì a.(a + 1) = (3k + 2).(3k + 2 + 1) = (3k + 1).(3k + 3) = 3k.(3k + 3) + 1.(3k + 3) = 9k2+9k+3k+3 chia cho 3 dư 1
Do đó [-3]2016 +1 ko phải là tích 2 số nguyên liên tiếp
a,Tìm x biết :(-1)+(-2)+.....+x=-120
b,Số (-3)^20+1 có phải là tích 2 số nguyên liên tiếp ko?
Chứng minh
a, Tích hai số nguyên liên tiếp luôn chia hết cho 2
b,Tích ba số nguyên liên tiếp chia hết cho 6
c,Tổng lập phương của ba số nguyên liên tiếp luôn chia hết cho 9
d,n^3+11n chia hết cho 6 với mọi n là số nguyên
e,n^5-5n^3+4n chia hết cho 120 với mọi n là số tự nhiên
trình bày cho mình luôn nha!!!!!!