Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Hoàng Tử Hà
19 tháng 2 2021 lúc 11:38

Bạn tham khảo câu trả lời của anh Lâm

https://hoc24.vn/cau-hoi/.334447965337

Ngô Chí Thành
Xem chi tiết
Hoàng Tử Hà
12 tháng 1 2021 lúc 18:14

Hiện tại mới nghĩ được câu b thôi

b/ \(u_1=\dfrac{1}{2};u_2=\dfrac{1}{2-\dfrac{1}{2}}=\dfrac{2}{3};u_3=\dfrac{1}{2-\dfrac{2}{3}}=\dfrac{3}{4}...\)

Nhận thấy \(u_n=\dfrac{n}{n+1}\) , ta sẽ chứng minh bằng phương pháp quy nạp

\(n=k\Rightarrow u_k=\dfrac{k}{k+1}\)

Chứng minh cũng đúng với \(\forall n=k+1\)

\(\Rightarrow u_{k+1}=\dfrac{k+1}{k+2}\)

Ta có: \(u_{k+1}=\dfrac{1}{2-u_k}=\dfrac{1}{2-\dfrac{k}{k+1}}=\dfrac{k+1}{k+2}\)

Vậy biểu thức đúng với \(\forall n\in N\left(n\ne0\right)\)

\(\Rightarrow limu_n=lim\dfrac{n}{n+1}=lim\dfrac{1}{1+\dfrac{1}{n}}=1\)

 

 

Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Mai Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Hồng Phúc
20 tháng 3 2022 lúc 14:40

Trước hết ta chứng minh \(0< u_n\le1+\sqrt{2}\):

Ta thấy: \(0< u_1=2\le1+\sqrt{2}\)

Giả sử điều này đúng đến \(0< u_k\le1+\sqrt{2}\)

Ta có: \(u_{k+1}=\dfrac{3u_k+1}{u_k+1}>0\)

Lại có: \(u_{k+1}=\dfrac{3u_k+1}{u_k+1}=3-\dfrac{2}{u_k+1}\le3-\dfrac{2}{1+\sqrt{2}}\le3-1=2\le1+\sqrt{2}\)

\(\Rightarrow0< u_{k+1}\le1+\sqrt{2}\)

Theo nguyên lí quy nạp, ta được: \(0< u_n\le1+\sqrt{2}\)

Khi đó ta có:

\(u_{n+1}-u_n=\dfrac{3u_n+1}{u_n+1}-u_{n\text{​​}}\)

\(=\dfrac{3u_n+1-u_n^2-u_n}{u_n+1}\)

\(=\dfrac{-u_n^2+2u_n+1}{u_n+1}\)

\(=-\dfrac{\left(u_n-1-\sqrt{2}\right)\left(u_n-1+\sqrt{2}\right)}{u_n+1}\ge0\)

\(\Rightarrow u_{n+1}\ge u_n\)

\(\Rightarrow\) Dãy tăng.

♥ Aoko ♥
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết