Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Tìm \(lim\dfrac{u_n}{3^n}\) biết: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=3u_n+2n-1\end{matrix}\right.\)

Nguyễn Đức Trí
10 tháng 9 2023 lúc 14:03

\(u_n:\left\{{}\begin{matrix}u_1=1\\u_{n+1}=3u_n+2n-1\left(1\right)\end{matrix}\right.\)

Đặt \(limu_n=a\Rightarrow limu_{n+1}=a\)

\(\left(1\right)\Rightarrow a=3a+2n-1\)

\(\Rightarrow a=\dfrac{1-2n}{2}\)

\(\Rightarrow limu_n=\dfrac{1-2n}{2}\)

\(\Rightarrow lim\dfrac{u_n}{3^n}=lim\dfrac{1-2n}{2.3^n}=0\)

Rin Huỳnh
3 tháng 12 2023 lúc 23:31

Đặt \(v_n=u_n+n\)

Chứng minh được \(3^n>n^2\) với mọi số nguyên dương n bằng phương pháp quy nạp. Suy ra: \(\left|\dfrac{n}{3^n}\right|< \left|\dfrac{n}{n^2}\right|=\dfrac{1}{n}\). Mà \(lim\dfrac{1}{n}=0\rightarrow lim\dfrac{n}{3^n}=0\)

\(u_{n+1}=3u_n+2n-1\rightarrow v_{n+1}=3v_n\\ \rightarrow v_n=v_1.3^{n-1}=2.3^{n-1}\\ \rightarrow u_n=2.3^{n-1}-n\\ lim\dfrac{u_n}{3^n}=lim\dfrac{2.3^{n-1}-n}{3^n}=lim\left(\dfrac{2}{3}-\dfrac{n}{3^n}\right)=\dfrac{2}{3}\)


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Việt Phương
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
phamthiminhanh
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết