1/2.3 + 1/3.4 + 1/4.5 + ... + 1/18.19 + 1/19.20
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
Gải giúp mình với nha mik tick cho
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{18}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{20}\)
=1-1/20
=19/20
tính tổng :
1/2.1 + 1/2.3 + 1/3.4 + ... + 1/18.19 + 1/19.20
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
=1-1/2+1/2-1/3+1/3-1/4+.........+1/18-1/19+1/19-1/20
=1-1/20
=19/20
A=1/1.2+1/2.3+1/3.4+...+1/18.19+1/19.20
dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1
áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20
Tính nhanh \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
Tính\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
Ta có:A: 1/1.2 +1/2.3 +1/3.4+...+1/18.19+1/19.20
=> A= 1-1/2 +1/2-1/3+1/3-1/4+...+1/18-1/19+1/19-1/20
=>A= 1-1/20=19/20
D=1/2.3+1/3.4+1/4.5+...+1/19.20
\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
\(D=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{19.20}\)
\(D=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{20}\)
\(D=\frac{1}{2}-\frac{1}{20}\)
\(D=\frac{9}{20}\)
Vậy : . . .
HOK TỐT
tính nhanh biểu thức sau
A.1/2+1/4+1/8+1/16+1/32
B.2/1.2+2/2.3+2/3.4+......+2/18.19+2/19.20
trả lời chỉ để lấy tích thời mọi người tích giùm hihi
mình muốn xem bài này ở đâu để trả lời đừng hỏi tai sao
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+....+\dfrac{1}{19.20}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1-\dfrac{1}{20}=\dfrac{19}{20}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+....+\dfrac{1}{19\cdot20}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{20}\)
\(A=1-\dfrac{1}{20}\)
\(A=\dfrac{19}{20}\)
Tính tổng : 1/2.3+ 1/3.4+ 1/4.5+ .... + 1/19.20
nhớ giải thích vì sao cho mình nhé
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Ta có công thức :\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Ta có :
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)
Vậy tổng \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}=\frac{9}{20}\)