tim x,y biet
a/ x/y = 3/4 va -3x + 5y =33
b/ x2/y2 = y2/16 va x2 + y2 = 100
1) Giai he pt:
a) x2 = 3x - y va y2 = 3y - x b) x + y + xy = 5 va x2 + y2 =5
a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)
TH1: \(x=y\)
Phương trình \(\left(1\right)\) tương đương:
\(x^2=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)
TH2: \(x=4-y\)
Phương trình \(\left(2\right)\) tương đương:
\(y^2=4y-4\)
\(\Leftrightarrow y^2-4y+4=0\)
\(\Leftrightarrow\left(y-2\right)^2=0\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2\)
Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)
b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm
TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)
Vậy ...
Cho x va y la hai dai luong ti le thuan;x1,x2 la hai gia tri khac nhau cua x va y1,y2 la hai gia tri tuong ung cua y. biet x1+x2=-1 va y1+y2=-7. Hay tim gia tri tuong ung cua y voi x=3
vì x và y là hai đại lượng tỷ lệ thuận nên:
\(\frac{x1}{x2}=\frac{y1}{y2}=\frac{x1+x2}{y1+y2}=\frac{-1}{-7}=\frac{1}{7}\) (1)
từ (1) => x=\(\frac{1}{7}y^{ }\)
vậy nếu x=3 thì y = 7.3=21
cho biet 2 dltln x va y, x1 va y1 la 2 gia tri cua x, y1 va y2 la 2 gia tri cua y
a) biet x1=5;x2 =2 va y1+y2=14.tinh y1,y2
b )biet x1 -x2=-6; y1=-3;y2=6 tinh x1 va x2
c) biet x1=-3 x2=8 va 3y1 + 2y2=-9 tinh y1 va y2
cảm ơn bạn nào giúp minh nha
cảm ơn nhiều
Bài 1: thu gọn biểu thức
b) (x-y)(x2-2x+y)
c) (x2-y)(x+y2)-(x-y)(x2+xy+y2)
d) 3x(2xy-z)-5y(x2-2)+3xz
b: (x-y)(x^2-2x+y)
\(=x^3-2x^2+xy-x^2y+2xy-y^2\)
\(=x^3-2x^2-x^2y+3xy-y^2\)
c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)
\(=x^2y^2-xy\)
d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)
\(=6x^2y-3xz-5x^2y+10y+3xz\)
\(=x^2y+10y\)
Rút gọn :
a. ( x + 2 ) ( x2 - 2x + 4 ) - ( 1 - 3x ) ( 1 + 3x + 9x2)
b . ( x + y ) ( y2 - 2y + 4 ) + ( 5 - y ) ( 25 + 5y + y2)
a: =x^3+8-1+27x^3=28x^3+7
b: Sửa đề: (2+y)(y^2-2y+4)+(5-y)(25+5y+y^2)
=8+y^3+125-y^3
=133
cho hai dai luong ti le nghich x va y ; x1,x2 la hai dai luong cua x;y1,y2 la hai dai luong cua y ,tinh y1,y2 biet y1^2+Y2^2=52 va x1=2, x2=3
minh chưa học
ai là bạn của mình đi qua thì tic nha!
cho biet x va y la hai dai luong ti le thuan,x1 va x2 la hai gia tri khac nhau cua x,y1 va y2 la hai gia tri tuong ung cua y
a/ tinh x1 biet y1=-3=-2,x2=5
b/ tinh x2,y2 biet x2+y2=10,x1=2,y1=3
cho 2 đại lượng tỉ lệ nghịch x và y , x1 và x2 là 2gtri của x, y1 và y2 là 2 gtri của y
a) biet x1 =5,x2=2 va y1+y2 =21
tinh y1 va y2
b)biet x2 =3 , y1=7 va 2x1-3y2 =30
tinh x1 va y2
MONG CÁC BN GIẢI HỘ MINK NHÉ
Phân tích các đa thức sau thành nhân tử:
a) 2xy + 3z + 6y + xz; b) a 4 - 9 a 3 + a 2 - 9a;
c) 3 x 2 + 5y - 3xy + (-5x); d) x 2 - (a + b)x + ab;
e) 4 x 2 - 4xy + y 2 - 9 t 2 ; g) x 3 – 3 x 2 y + 3x y 2 – y 3 – z 3
h) x2 - y2 + 8x + 6y + 7.
a) Cách 1.
Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)
= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).
Cách 2.
Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)
= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).
b) Biến đổi được a 4 - 9 rt 3 + a 2 -9a = (a- 9)a( a 2 +1).
c) Biến đổi được 3 x 2 + 5y - 3xy + (-5x) = (x - y)(3x - 5).
d) Biến đổi được x 2 - (a + b)x + ab = (x- a)(x - b).
e) Ta có 4 x 2 - 4xy + y 2 – 9 t 2 = ( 2 x - y ) 2 - ( 3 t ) 2
= (2x - y - 3t )(2x - y + 31).
g) Ta có x 3 - 3 x 2 y + 3 xy 2 - y 3 - z 3
= ( x - y ) 3 - z 3 = (x - y - z)( x 2 + y 2 + z 2 - 2xy + xz - yz).
h) Ta có x 2 - y 2 + 8x + 6y+ 7 = ( x 2 +8x + 16) - ( y 2 - 6y+ 9)
= ( x + 4 ) 2 - ( y - 3 ) 2 =(x-y + 7)(x + y + l).
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a, 3x(2x - y) + 5y(y - 2x)
b, (x - 5)2 - 9(x + y)2
c, y2 + 2yz + z2 - xy - xz
d, x2 - 9x2y2 + y2 + 2xy
e, x2 - 10x + 24
g, 6x2 + 7x - 5
h, x2 + 4xy - 12y2
k, a4 + 3a2 + 4
a) \(3x\left(2x-y\right)+5y\left(y-2x\right)\)
\(=3x\left(2x-y\right)-5y\left(2x-y\right)\)
\(=\left(3x-5y\right)\left(2x-y\right)\)
b) \(\left(x-5\right)^2-9\left(x+y\right)^2\)
\(=\left(x-5\right)^2-3^2\left(x+y\right)^2\)
\(=\left(x-5\right)^2-\left(3x+3y\right)^2\)
\(=\left(x-5+3x+3y\right)\left(x-5-3x-3y\right)\)
\(=\left(4x+3y-5\right)\left(-2x-3y-5\right)\)
a: \(3x\left(2x-y\right)+5y\left(y-2x\right)=\left(2x-y\right)\left(3x-5y\right)\)
e: \(x^2-10x+24=\left(x-4\right)\left(x-6\right)\)
g) \(6x^2+7x-5\)
=\(6x^2+10x-3x-5\)
=\(\left(6x^2+10x\right)-\left(3x+5\right)\)
=\(2x\left(3x+5\right)-\left(3x+5\right)\)
=\(\left(2x-1\right)\left(3x+5\right)\)