Tập hợp các giá trị của chữ số x sao cho Ax=Bx(A;B ϵ N;mọi n ϵ N*)
Cho đa thức f(x) = ax^2 +bx + c có giá trị nguyên với mọi giá trị của x thì các hệ số a, b , c là các số nguyên
Cho f(x) = ax2 + bx + c có tính chất giá trị của f(x) nguyên khi x nguyên. Hỏi các hệ số a, b và c có nhất thiết là các số nguyên không ? Tại sao ?
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
Cho hàm số y = ax3 + bx2 + cx + d (a khác 0) , có đồ thị (C). Tìm tập hợp tất cả các giá trị thực của tham số a để tiếp tuyến của (C) tại điểm x0 = -b/3a có hệ số góc nhỏ nhất.
Giúp mình cách làm với ạ 😍
Tìm giá trị lớn nhất, giá trị nhỏ nhất của đa thức f(x)=ax^2+bx+c (a,b,c là các số cho trước và a khác 0)
cho (f)x = ax2 + bx + c nhận giá trị nguyên với mọi giá trị nguyên của x . CMR 2a ;a + b và c là các số nguyên
Ta có : f(0) = a.02 + b.0 + c = c\(\in\)Z
f(1) = a.12 + b.1 + c = a + b + c \(\in\)Z
Nên a + b \(\in\)Z
f(2) = a.22 + b.2 + c = 4a + 2b + c \(\in\)Z
mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a+b) + c
Nên 2a \(\in\)Z
với mỗi hàm số y=-x^2+2x+3 và y= 1/2x^2+x+4 , hãy :a) tìm tập hợp các giá trị x sao cho y>0 b)tim tập hợp các giá trị x sao cho y<0
a: \(y=-x^2+2x+3\)
y>0
=>\(-x^2+2x+3>0\)
=>\(x^2-2x-3< 0\)
=>(x-3)(x+1)<0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)
=>-1<x<3
\(y=\dfrac{1}{2}x^2+x+4\)
y>0
=>\(\dfrac{1}{2}x^2+x+4>0\)
\(\Leftrightarrow x^2+2x+8>0\)
=>\(x^2+2x+1+7>0\)
=>\(\left(x+1\right)^2+7>0\)(luôn đúng)
b: \(y=-x^2+2x+3< 0\)
=>\(x^2-2x-3>0\)
=>(x-3)(x+1)>0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)
=>x>3
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)
=>x<-1
\(y=\dfrac{1}{2}x^2+x+4\)
\(y< 0\)
=>\(\dfrac{1}{2}x^2+x+4< 0\)
=>\(x^2+2x+8< 0\)
=>(x+1)2+7<0(vô lý)
cho đa thức f(x)=ax^2+bx+c,trong đó a,b,c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho số nguyên tố p(p>2) với mọi giá trị nguyên của x . CMR : a,b,c đều chia hết cho p
Cho a, b là hai số nguyên dương sao cho cả hai hàm số y=ax+b4x+ay=ax+b4x+avà y=bx+a4x+by=bx+a4x+b đồng biến trên từng khoảng xác định. Giá trị nhỏ nhất của biểu thức S=a+b ?
Ghi lại đề bài đi bạn, đề thế này không ai biết nó là gì cả