tìm các số tự nhiên x y sao cho 45 là bội của x-2
Bài 1 tìm các số tự nhiên x sao cho 2n + 29 là bội của 2n + 29
Bài 2 tìm số tư nhiên x sao cho x + 15 là bôi của 2n + 1
Bai 3 tìm x thuộc n sao cho 2x + 3 là bội của x - 3
Bai 4 tìm các số tự nhiên x , y sao cho
a [ a + 1 ]. [ y - 2] = 3
b [ x - 1 ] . [ y + 2] = 2
1. Tìm x dựa vào quan hệ ước, bội
a) Tìm số tự nhiên x sao cho x - 1 là ước của 12.
b) tìm số tự nhiên x sao cho 2x + 1 là ước của 28.
c) Tìm số tự nhiên x sao cho x + 15blà bội của x + 3.
d) Tìm các số tự nhiên x, y sao cho ( x + 1 ) . ( y - 1 ) = 3
GIẢI TỪNG CHI TIẾT GIÚP MÌNH NHA!
CẢM ƠN CÁC BẠN!
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng nha
\(b,28⋮2x+1\)
\(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Ta có bảng
2x+1 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
2x | 0 | -2 | 1 | -3 | 6 | -8 | 13 | -15 |
x | 0 | -1 | 1/2 | -3/2 | 3 | -4 | 13/2 | -15/2 |
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng
\(d,\left(x+1\right)\left(y-1\right)=3\)
\(\Rightarrow x+1;y-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
tìm số tự nhiên x sao cho
45 là bội của x trừ 2
45 là bội của x - 2
=> 45 \(⋮\)x - 2
=> x - 2 \(\inƯ\left(45\right)\)(1)
Vì \(x\inℕ\Rightarrow x\ge0\Rightarrow x-2\ge-2\)(2)
Từ (1) và (2) => \(x-2\in\left\{1;-1;3;5;9;15;45\right\}\)
=> \(x\in\left\{3;1;5;7;11;17;47\right\}\)
Vậy \(x\in\left\{3;1;5;7;11;17;47\right\}\)
Tìm x dựa vào quan hệ ước, bội.
a) Tìm số tự nhiên x sao cho x - 1 là ước của 12
b) Tìm số tự nhiên x sao cho 2x + 1 là ước của 28
c) Tìm số tự nhiên x sao cho x + 15 là bội của x + 3
d) Tìm các số tự nhiên x, y sao cho ( x + 1 ) . ( y - 1 ) = 3
e) Tìm các số nguyên x sao cho ( x + 2 ) ( y - 1 ) = 2
f) Tìm số nguyên tố x vừa là ước của 275 vừa là ước của 180
g) Tìm hai số tự nhiên x, y biết x + y = 12 và ƯCLN ( x, y ) = 5
h) Tìm hai số tự nhiên x, y biết x + y = 32 và ƯCLN ( x, y ) = 8
i) Tìm số tự nhiên x biết x : 10, x : 12, x : 15 và 100 < 150
j) Tìm số x nhỏ nhất khác 0 biết x chia hết cho 24 và 30
k) 40 chia hết cho x, 56 chia hết cho n và x > 6
GIÚP MÌNH LÀM BÀI NÀY VỚI BÀI NÀY MÌNH KHÔNG HIỂU GÌ CẢ!
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
bạn cho như thế này lm sao giải hết cho bn đc
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Tìm x dựa vào quan hệ ước, bội
a) Tìm số tự nhiên x sao cho x - 1 là ước của 12.
b) Tìm số tự nhiên x sao cho 2x + 1 là ước của 28.
c) Tìm số tự nhiên x sao cho x + 15 là bội của x + 3.
a) Ta có : \(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
b) Ta có : \(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm12;\pm28\right\}\)
Mà \(2x+1\)là số chẵn
\(\Rightarrow2x+1\in\left\{\pm1;\pm7\right\}\)
...
c) Ta có : \(x+15\)là bội của \(x+3\)
\(\Rightarrow x+15⋮x+3\)
\(\Rightarrow x+3+12⋮x+3\)
Vì \(x+3⋮x+3\)
\(\Rightarrow12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
Sửa lại phần b, dòng 2 :
Mà \(2x+1\)là số lẻ
...
Chỉ rõ rằng, nếu x và y là các số tự nhiên sao cho số tự nhiên x+2y là bội của 5 thì số 3x-4y cũng là bội của 5
MỌi người ơi! giúp mik với huhu....
1.tìm các số có hai chữ số là bội của : a)24 b)39
2.tìm các số tự nhiên sao cho :
a)x + 20 là bội của x + 2
b)x+5 là bội của 4x + 69
c)10x +23 chia hết cho 2x + 1
1) \(B\left(24\right)=\left\{24;48;72;96\right\}\)
\(B\left(39\right)=\left\{39;78\right\}\)
2) a) \(x+20⋮x+2\)
\(\Rightarrow x+20-\left(x+2\right)⋮x+2\)
\(\Rightarrow x+20-x-2⋮x+2\)
\(\Rightarrow18⋮x+2\)
\(\Rightarrow x+2\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;4;7;16\right\}\)
\(\Rightarrow x\in\left\{0;1;4;7;16\right\}\left(x\in N\right)\)
b) \(x+5⋮4x+69\)
\(\Rightarrow4\left(x+5\right)-\left(4x+69\right)⋮4x+69\)
\(\Rightarrow4x+20-4x-69⋮4x+69\)
\(\Rightarrow-49⋮4x+69\)
\(\Rightarrow4x+69\in\left\{1;7;49\right\}\)
\(\Rightarrow x\in\left\{-17;-\dfrac{31}{2};-20\right\}\)
\(\Rightarrow x\in\varnothing\left(x\in N\right)\)
c) \(10x+23⋮2x+1\)
\(\Rightarrow10x+23-5\left(2x+1\right)⋮2x+1\)
\(\Rightarrow10x+23-10x-5⋮2x+1\)
\(\Rightarrow18⋮2x+1\)
\(\Rightarrow2x+1\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow x\in\left\{0;\dfrac{1}{2};1;\dfrac{5}{2};4;\dfrac{17}{2}\right\}\)
\(\Rightarrow x\in\left\{0;1;4\right\}\left(x\in N\right)\)
Đính chính câu 1
Không có số có 2 chữ số thỏa đề bài
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)