Chứng minh rằng :
a ) 125 a + 25 b - 75 c chia hết cho 25 b ) 39a + 26b chia hết cho13cho biết a+4b chia hết cho 13 (a,b thuộc N ).Chứng minh rằng :10a+b chia hết cho13
chứng minh rằng nếu a - 5b chia hết cho13 thì 10a +b chia hết cho 13 ?
ta có:5(10a+b)+(a-5b)=(50a+5b)+(a-5b)
=51a chia hết cho 13
\(\Rightarrow\)5(10a+b)+(a-5b) chia hết cho 13
mà a-5b chia hết cho13 nên 5(10a+b)chia hết cho 13
suy ra 10a+b chia hết cho 13
CHỨNG MINH RẰNG :a*) Một số chia hết cho 25 khi số tạo thành từ hai chữ số tận cùng của nó chia hết cho 25.
b) Một số chia hết cho 8 khi số tạo thành từ ba chữ số tận cùng của nó chia hết cho 8.
b*) Một số chia hết cho 125 khi số tạo thành từ ba chữ số tận cùng của nó chia hết cho 125.
c) Một số chia hết cho 11 khi: hiệu giữa tổng các chữ số hàng chẵn và tổng các chữ số hàng lẻ (tính từ trái sang) chia hết cho 11. Chứng minh cho trường hợp số có 5 chữ số.
giúp mik nha cần gấp lắm
Hãy chứng minh
a,6⁵×5-3⁵ chia hết cho 53
b, 2+2²+2³+2⁴+...+2¹²⁰ chia hết cho 3,7,31,17
c,3⁴ⁿ+¹ +2⁴ⁿ+¹ chia hết cho 5
d, 75+(4²⁰⁰⁶ + 4²⁰⁰⁵+4²⁰⁰⁴+...+1)×25 chia hết cho 100
a) Đặt A = \(6^5.5-3^5\)
\(=\left(2.3\right)^5.5-3^5\)
\(=2^5.3^5.5-3^5\)
\(=3^5.\left(2^5.5-1\right)\)
\(=3^5.\left(32.5-1\right)\)
\(=3^5.159\)
\(=3^5.3.53⋮53\)
Vậy \(A⋮53\)
b) Đặt \(B=2+2^2+2^3+...+2^{120}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{119}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy \(B⋮3\)
\(B=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2\right)+3^4.\left(1+2+2^2\right)+...+2^{118}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{118}.7\)
\(=7.\left(2+2^4+...+2^{118}\right)⋮7\)
Vậy \(B⋮7\)
\(B=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)
\(+2^{116}.\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+2^6.31+...+2^{116}.31\)
\(=31.\left(2+2^6+...+2^{116}\right)⋮31\)
Vậy \(B⋮31\)
\(B=\left(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}+2^{16}\right)\)
\(+...+\left(2^{113}+2^{114}+2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)+2^9.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(+...+2^{113}.\left(1+2+2^2+2^3+2^4+2^5+2^6+2^7\right)\)
\(=2.255+2^9.255+...+2^{113}.255\)
\(=255.\left(2+2^9+...+2^{113}\right)\)
\(=17.15.\left(2+2^9+...+2^{113}\right)⋮17\)
Vậy \(B⋮17\)
c) Đặt C = \(3^{4n+1}+2^{4n+1}\)
Ta có:
\(3^{4n+1}=\left(3^4\right)^n.3\)
\(2^{4n}=\left(2^4\right)^n.2\)
\(3^4\equiv1\left(mod10\right)\)
\(\Rightarrow\left(3^4\right)^n\equiv1^n\left(mod10\right)\equiv1\left(mod10\right)\)
\(\Rightarrow3^{4n+1}\equiv\left(3^4\right)^n.3\left(mod10\right)\equiv1.3\left(mod10\right)\equiv3\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(3^{4n+1}\) là \(3\)
\(2^4\equiv6\left(mod10\right)\)
\(\Rightarrow\left(2^4\right)^n\equiv6^n\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow2^{4n+1}\equiv\left(2^4\right)^n.2\left(mod10\right)\equiv6.2\left(mod10\right)\equiv2\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(2^{4n+1}\) là \(2\)
\(\Rightarrow\) Chữ số tận cùng của C là 5
\(\Rightarrow C⋮5\)
d) Đặt \(D=75+\left(4^{2006}+4^{2005}+4^{2004}+...+1\right).25\)
Đặt \(E=4^{2006}+4^{2005}+4^{2004}+...+1\)
\(\Rightarrow4E=4^{2007}+4^{2006}+4^{2005}+...+4\)
\(\Rightarrow3E=4E-E\)
\(=\left(4^{2007}+4^{2006}+4^{2005}+...+4\right)-\left(4^{2006}+4^{2005}+4^{2004}+...+1\right)\)
\(=4^{2007}-1\)
\(\Rightarrow E=\dfrac{\left(4^{2007}-1\right)}{3}\)
\(\Rightarrow D=75+\dfrac{4^{2007}-1}{3}.25\)
Ta có:
\(4^{2007}=\left(4^2\right)^{1003}.4\)
\(4^2\equiv6\left(mod10\right)\)
\(\left(4^2\right)^{1003}\equiv6^{1003}\left(mod10\right)\equiv6\left(mod10\right)\)
\(\Rightarrow4^{2007}\equiv\left(4^2\right)^{1003}.4\left(mod10\right)\equiv6.4\left(mod10\right)\equiv4\left(mod10\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(4^{2007}\) là 4
Chứng minh rằng: a+4b chia hết cho13\(\Leftrightarrow\)10a+b chia hết cho 5.
Cho A = 75 x (42023 + 42022 + ... + 42 + 5) + 25. Chứng minh rằng A chia hết cho 42024.
Thị Hạnh Nguyễn đây là chỗ học tập ko phải để bn gửi mấy cái linh tinh này nhé nếu bn còn như vậy thì mình sẽ tố cáo bn với admin OLM nha
A = 75 x ( 42023 + 42022 +.....+ 42 + 5) + 25
A = 75 x ( 42023 + 42022 +.....+ 42) + 75 x 5 + 25
A = 75 x ( 42023 + 42022 +......+ 42) + 400
Đặt B = 42023 + 42022 +.....+43 + 42
4 x B = 42024 + 42023 + 42022+.....+43
4 x B - B = 42024 - 42
3 x B = 42024 - 42
B = \(\dfrac{4^{2024}-4^2}{3}\)
A = 75 x \(\dfrac{4^{2024}-4^2}{3}\) + 400
A = 25 x ( 42024 - 16) + 400
A = 25 x 42024 - 400 + 400
A = 25 x 42024
4 2024 ⋮ 42024 ⇒ 25 x 42024 ⋮ 42024
⇒ A = 75 x ( 42023 + 42022+ ....+ 42+5) +25 ⋮ 42024 (đpcm)
Bài 1: Chứng minh rằng:
a) 165+ 215 chia hết cho 33
b) 88+ 220 chia hết cho 17
c) 4343 - 1717 chia hết cho 10
d) 1 - 2 + 22 - 23 + 24 - 25 + 26 - ... - 22021 + 22022 chia 6 dư 1
Bài 2: Chứng minh rằng:
a) \(\overline{aaa}\) ⋮ 37 b) (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a, \(\overline{aaa}\) \(⋮\) 37
\(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)
b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
\(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11
1, Thực hiện phép tính :
a, ( 11 + 159 ) . 37 + ( 185 - 31 ) : 14
b, [ 25 . 103 + 7225 : 17 - ( 1500 - 125 ) : 5 ] . 32
c, 136 . 25 + 75 . 136 - 6 mũ 2 . 10 mũ 2
2, Chứng minh rằng tích của 2 số chẵn liên tiếp chia hết cho 8
Câu 2:
Gọi hai só chẵn liên tiếp là 2k+2;2k+4
Theo đề, ta có: \(A=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)
Vì k+1 và k+2 là hai số lien tiếp
nên (k+1)(k+2) chia hết cho 2
=>A chia hết cho 8
chứng tỏ rằng
a) A=49+105+399 chia hết cho 7
b) B=84+48+120 không chia hết cho 8
c) C=125 nhân 11+50 nhân 34 chia hết cho 25
d) D= 1+4+4 mũ 2+4 mũ 3 +...........+4 mũ 10 +4 mũ 11 chia hết cho21