Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tiến Đỗ
Xem chi tiết
thảo13032007
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 3 2021 lúc 14:41

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

Phạm Chí Dũng
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 23:30

Lời giải:
$2x-xy+3y=9$

$\Rightarrow x(2-y)+3y=9$

$\Rightarrow x(2-y)-3(2-y)=3$

$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:

TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm) 

TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương) 

TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)

TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)

Phạm Quốc Học
Xem chi tiết
Khách vãng lai
Xem chi tiết
Nguyễn Thị Mai Anh
5 tháng 5 2018 lúc 14:05

Bài này dễ mà!

Có: \(xy+2x=27-3y\)

\(x\left(y+2\right)=33-3\left(y+2\right)\)

\(x\left(y+2\right)+3\left(y+2\right)=33\)

\(\left(x+3\right)\left(y+2\right)=33\)

Đến phần này chắc bạn tự làm đc rồi nhỉ

quản đức phú
Xem chi tiết
tth_new
27 tháng 2 2019 lúc 19:34

Viết pt trên thành pt bậc 2 đối với x:

\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)

(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)

\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)

Ta cần có \(\Delta\) là số chính phương.Tức là:

\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)

\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)

Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-

no name
Xem chi tiết
viet cute
7 tháng 3 2017 lúc 23:07

CHO TEN ROI NOI

no name
7 tháng 3 2017 lúc 23:34

ngọc anh ạ

Thắng Nguyễn
8 tháng 3 2017 lúc 11:39

\(x^2-y^2+2x-4y-10=0\)

\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)

\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)

\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)

\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Nguyễn Phạm Ngọc Linhhh
Xem chi tiết
Nguyễn Phạm Ngọc Linhhh
Xem chi tiết