Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khoa
Xem chi tiết
⭐Hannie⭐
7 tháng 6 2023 lúc 15:04

` @ \color{Red}{m}`

` \color{lightblue}{Answer}`  

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x}{x+1}\)

__

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-\left(2x-6\right)}{2x\left(x+3\right)}\\ =\dfrac{3x-2x+6}{2x\left(x+3\right)}\\ =\dfrac{x+6}{2x\left(x+3\right)}\)

__

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\\ =\dfrac{1}{1-x}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1}{1+x}\)

YangSu
7 tháng 6 2023 lúc 15:10

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\left(dkxd:x\ne\pm1\right)\)

\(=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x+1}\)

========================

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\left(dkxd:x\ne\pm3;x\ne0\right)\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)

\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x+6}{2x^2+6x}\)

==========================

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\left(dkxd:x\ne\pm1\right)\)

\(=-\dfrac{1}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-\left(x+1\right)+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-1+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}\)

BTS FOREVER
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 20:38

Ta có: \(\left(\dfrac{x^2-3x}{x^2-9}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}-\dfrac{x-3}{2-x}+\dfrac{x-2}{x+3}\right)\)

\(=\left(\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-1\right):\left(\dfrac{9-x^2+x^2-9+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\right)\)

\(=\left(\dfrac{x}{x+3}-1\right):\dfrac{x-2}{x+3}\)

\(=\dfrac{x-x-3}{x+3}\cdot\dfrac{x+3}{x-2}\)

\(=\dfrac{-3}{x-2}\)

hnamyuh
4 tháng 7 2021 lúc 20:40

Điều kiện : x ≠ 2 ; x ≠ 3 ; x ≠ - 3

\(\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-1\right):\left(\dfrac{\left(3-x\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{2-x}+\dfrac{x-2}{x+3}\right)\)

\(=\left(\dfrac{x}{x+3}-1\right):\left(\dfrac{9-x^2+\left(x-3\right)\left(x+3\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\right)\)

\(=\dfrac{x-x-3}{x+3}:\dfrac{9-x^2+x^2-9+\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\)

\(=\dfrac{-3}{x+3}:\dfrac{x-2}{\left(x+3\right)}\)

\(=\dfrac{-3}{x-2}\)

hihi
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 23:01

\(M=\dfrac{x}{\left(x-2\right)\cdot\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\)

\(=\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-6}{x^2-4}\)

Hoa Vô Khuyết
Xem chi tiết
YangSu
27 tháng 7 2023 lúc 16:53

\(P=\left(\dfrac{3x^2+3x-3}{x^2+x-2}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right):\dfrac{1}{x^2-1}\left(dk:x\ne-2,x\ne\pm1\right)\)

\(=\left(\dfrac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}+\dfrac{1}{x-1}+\dfrac{1}{x+2}-2\right).\left(x^2-1\right)\)

\(=\left(\dfrac{3x^2+3x-3+x+2+x-1-2\left(x^2+x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{3x^2+5x-2-2x^2-2x+4}{x+2}.\left(x+1\right)\\ =\dfrac{x^2+3x+2}{x+2}.\left(x+1\right)\)

\(=\dfrac{x^2+x+2x+2}{x+2}.\left(x+1\right)\\ =\dfrac{x\left(x+1\right)+2\left(x+1\right)}{x+2}.\left(x+1\right)\\ =\dfrac{\left(x+1\right)^2\left(x+2\right)}{x+2}\\ =x^2+2x+1\)

Ta có :

 \(x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)

Với \(x=3\) thì \(P=x^2+2x+1=\left(x+1\right)^2=\left(3+1\right)^2=16\)

Vậy ...

Khánh Linh Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2023 lúc 21:46

6:

a: ĐKXĐ: x<>0

\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)

b: ĐKXĐ: x<>1

\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)

\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)

c: ĐKXĐ: x<>-2

\(\dfrac{x^2+4x+4}{2x+4}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

d: ĐKXĐ: x<>-2

\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)

\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)

e: ĐKXĐ: x<>-y

\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)

g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)

7:

a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)

\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)

b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)

\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)

c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)

d:

\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)

\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)

Nguyễn Huy Phúc
Xem chi tiết
Trên con đường thành côn...
28 tháng 8 2021 lúc 20:23

undefinedundefined

Thắng Huỳnh
Xem chi tiết
HT.Phong (9A5)
8 tháng 1 lúc 10:22

\(\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{x^2-5x+6}-\dfrac{2x-4}{x-2}\left(ĐK:x\ne3;x\ne2\right)\)

\(=\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{x\left(x-2\right)-3\left(x-2\right)}-\dfrac{2x-4}{x-2}\)

\(=\dfrac{1}{x-3}+\dfrac{3x^2-8x+10}{\left(x-3\right)\left(x-2\right)}-\dfrac{2x-4}{x-2}\)

\(=\dfrac{x-2}{\left(x-2\right)\left(x-3\right)}+\dfrac{3x^2-8x+10}{\left(x-3\right)\left(x-2\right)}-\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x-2+3x^2-8x+10-\left(2x^2-6x-4x+12\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{3x^2-7x+8-2x^2+10x-12}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+3x-4}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+3x-4}{x^2-5x+6}\)

Trà chanh chém gió
Xem chi tiết
YangSu
27 tháng 7 2023 lúc 17:07

Bạn xem lại \(a,b\) mình làm rồi nha.

\(c,P>0\Leftrightarrow\left(x+1\right)^2>0\) (luôn đúng \(\forall x\))

Vậy với mọi giá trị x thì \(P>0\).

thu dinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2021 lúc 13:51

Ta có: \(P=\left(\dfrac{3x-6\sqrt{x}}{x\sqrt{x}-2x}-\dfrac{1}{2-\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{x\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}}\right)\cdot\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{3\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)\(=\dfrac{3\sqrt{x}-6+\sqrt{x}+x-5\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)^2}\)