Cho P và Q là SNT > 3 và P - Q = 2
CMR P + Q ⋮ 12
Cho p, q là các snt>3 và p>q. CMR: p^2 - q^2 chia hết cho 24
Cho p và q là 2 SNT > 5. CMR p2-q2 chia hết cho 240
Cho p,q là hai SNT sao cho p>q>3 và p-q=2 . Chứng minh rằng p+q chia hết cho 2.
Bài làm:
Ta có: Vì p,q là 2 số nguyên tố lớn hơn 3
=> p,q đều là 2 số lẻ
=> p + q chẵn với mọi số nguyên tố p,q
=> p + q chia hết cho 2
=> đpcm
Cho mk xin lỗi mk nhầm đề xíu p+q chia hết cho 12 chứ ko pk 2 ạ.
Bài làm:
Vì q là số nguyên tố lớn hơn 3 nên q có 2 dạng như 3a+1 và 3a+2 (với a là số tự nhiên)
Ta xét 2 TH sau:
+Nếu: q = 3a + 1 => p = 2 + 3a + 1 = 3a + 3 = 3(a+1) là hợp số (loại)
+Nếu: q = 3a + 2 => p = 2 + 3a + 2 = 3a + 4
Mà q là số nguyên tố lớn hơn 3
=> a lẻ => a + 1 chẵn và chia hết cho 2
Thay vào: p + q = 3a + 2 + 3a + 4 = 6a + 6 = 6(a+1) , mà 6 chia hết cho 6, a + 1 chia hết cho 2
=> 6(a+1) chia hết cho 12
=> p + q chia hết cho 12
=> đpcm
Chứng Minh Rằng : nếu p và p + 2 là 2 SNT lớn hơn 3 thì tổng của chúng \(⋮\)cho 12.
Giả sử p và p + 2 là số nguyên tố lớn hơn 3. Khi đó p không chia hết cho 3. Áp dụng định lí phép chia có dư ta có:
p = 3q + 1 hoặc p = 3q + 2 với q nguyên dương. Vì p + 2 cũng là số nguyên tố nên không thể xảy ra p = 3q + 1 (vì nếu trái lại thì p + 2 = 3q + 1 + 2 = 3q + 3 là hợp số). Vậy p = 3q + 2, suy ra 3q = p - 2, suy ra q là ước của p - 2, vì p > 3 nên p lẻ, suy ra p -2 lẻ và do đó q lẻ. Khi đó ta có p + p + 2 = 2(p + 1) = 2(3q + 2 + 1) = 6(q + 1) chia hết cho 12 (vì q lẻ).
Hok tot
Giải
. p + (p+2) = 2p + 2 = 2.(p+1)
. p là SNT > 3 \(\Rightarrow\)\(lẻ\Rightarrow p+1\)chẵn
\(\Rightarrow\left(p+1\right)⋮2\) ( 1 )
- Trong 3 STN liên tiếp : p;p+1;p+2 có 1 số \(⋮3\)
Vì p;p+2 là 2 SNT > 6 nên p không\(⋮3\); p+ 2 ko \(⋮\)3
\(\Rightarrow\left(p+1\right)⋮3\) ( 2 )
\(\Rightarrow2\left(p+1\right)⋮12\)
Vậy ..............
cho q,p là các SNT sao cho p-1⋮q và q^3-1⋮p chứng minh rằng p+q là số chính phương
2 SNT gọi là sinh đôi nếu trúng là 2 SNT lẻ liên tiếp .
CMR : 1 STN nằm giữa 2 SNT sinh đôi thì \(⋮\)6 ( SNT lớn hơn 3 )
tìm p và q sao cho p+q và p-q đều là SNT
Cho p,q là các số nguyên tố sao cho p>q>3 và p-q=2.CMR p+q chia hết cho 12
Vì là số nguyên tố lớn hơn \(3\)và \(p-q=2\)nên \(p=3k+1,q=3k-1\), \(k>1\).
suy ra \(p+q=6k\).
Mà \(k\)phải là số chẵn do số nguyên tố lớn hơn \(3\)là số lẻ, do đó \(p+q\)chia hết cho \(12\).
Tìm p và q sao cho p+q và p nhân q đều là snt