Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Anh Gamer
Xem chi tiết
Đặng Ngọc Quỳnh
28 tháng 9 2020 lúc 18:46

Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)

Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm

Khách vãng lai đã xóa
๓เภђ ภوยץễภ ђảเ
28 tháng 9 2020 lúc 19:17

Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\) 

Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv0\left(mod3\right)\) (loại)  (2)

Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv2\left(mod3\right)\)( loại)   (3)

Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\) 

Hay n chia 3 dư 1

Với \(n\equiv1\left(mod3\right)\) ta có

\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\) 

=> \(7n^2+6n+2017\) chia 3 dư 2

Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)

Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)

Khách vãng lai đã xóa
Hồ Thị Hà Giang
Xem chi tiết
Nguyễn Thị Mỹ Duyên
Xem chi tiết
Hằng Phạm
5 tháng 1 2016 lúc 19:19

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

Nguyễn Thị Thanh Thùy
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Akai Haruma
15 tháng 8 2018 lúc 10:40

Lời giải:

Ta có:

\(2^3\equiv -1\pmod 9\Rightarrow (2^3)^{2n+1}\equiv (-1)^{2n+1}\equiv -1\equiv 8\pmod 9\)

hay \(2^{6n+3}\equiv 8\pmod 9\)

Đặt \(2^{6n+3}=9k+8\)

Vì $2^{6n+3}$ chẵn nên $9k+8$ chẵn, do đó $k$ chẵn. Đặt $k=2t$

Khi đó: \(2^{2^{6n+3}}+3=2^{9k+8}+3=2^{18t+8}+3\)

Theo định lý Fermat nhỏ:

\(2^{18}\equiv 1\pmod{19}\Rightarrow 2^{18t+8}+3\equiv 2^8+3=259\equiv 12\pmod {19}\)

Vậy \(2^{2^{6n+3}}+3\) chia $19$ dư $12$ chứ không chia hết cho $19$

PhamTienDat
Xem chi tiết
Hà Xuân Sơn
Xem chi tiết
Nguyễn Thị Hương Giang
Xem chi tiết

A = \(\dfrac{7n+1}{6}\) ; A ; n\(\in\) N; cm: \(\dfrac{n}{2}\)\(\dfrac{n}{3}\) tối giản.

A = \(\dfrac{7n+1}{6}\) ; A \(\in\)\(\Leftrightarrow\) 7n + 1 \(⋮\) 6 \(\Leftrightarrow\) 6n + n + 1 \(⋮\) 6 ⇔ n+1 \(⋮\) 6

\(\Leftrightarrow\) n = 6k - 1 ; Ư(2) = {1; 2}; 1 \(⋮̸\) 2 ⇒ 6k - 1 \(⋮̸\) 2 

⇒ƯCLN(n;2) =1 ⇒ \(\dfrac{n}{2}\) tối giản (1)

Ư(3) = {1; 3}; 1 \(⋮̸\) 3 ⇒ 6k - 1 \(⋮̸\) 3 

⇒ ƯCLN(n;3) = 1 ⇒ \(\dfrac{n}{3}\) tối giản (2)

Kết hợp (1) và (2) ta có 

\(\dfrac{7n+1}{6}\) là số tự nhiên với n \(\in\) N thì \(\dfrac{n}{2}\) và \(\dfrac{n}{3}\) tối giản (đpcm)

 

 

 

Nguyễn Như Bảo Hân
Xem chi tiết
Trần Thanh Phương
19 tháng 6 2019 lúc 15:23

Nguyễn Như Bảo Hân thay n = 0 vào lại thấy ngay đề sai

Best chép đề sai :D