Tính tổng: a) S=1+1/2+1/4+1/8+...+1/1024
b)1+2+3+...+200
c) S=1.2+2.3+3.4+...+99.100
tính tổng
S=1.2+2.3+3.4+.....+99.100
P=1+3+5+7+...+2015
T=1+2-3-4+5+6-7-8+...+97+98-99-100
S = 1.2 + 2.3 + 3.4 +...+99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4(5 - 2) +...+ 99.100(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
P = 1 + 3 + 5 + 7 +...+ 2015
P = (2015 + 1)1008 : 2
P = 1016064
T = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 +...+ 97 + 98 - 99 - 100
T = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +...+ (97 + 98 - 99 - 100)
T = (-4) + (-4) +...+ (-4)
T = (-4)25
T = -100
Tính tổng:S=1+2+3+...+200
S=1+1/2+1/4+1/8+...+1/1024
S=1.2+2.3+3.4+...+99.100
Giai nhanh giup minh trong 15 phut nhe
số các chữ số đó là
(200-1):1+1=200
số cặp đó là
200:2=100
tổng 1 cạp là
200+1=201
giá trị bt là
201.100=20100
Ta có : \(S=1+\frac{1}{2}+\frac{1}{4}+......+\frac{1}{1024}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+.....+\frac{1}{1024}\)
\(\Rightarrow2S-S=2-\frac{1}{1024}\)
\(\Rightarrow S=\frac{2047}{1024}\)
a. 13 - 12 + 11 + 10 - 9 + 8 - 7 - 6 + 5 -4 + 3 + 2 -1
b. tính tổ s = 1.2 = 2.3 + 3.4 + ... + 99.100
a ta co ;
13 -12 +11+10-9+8-7-6+5-4+3+2-1
=13-(12-11-10+9) +(8-7-6+5) -(4-3-2+1)
= 13 -0+0 -0
=13
câu a = 13 còn câu b thì để tuần sau nhé
13-12+11+10-9+8-7-6+5-4+3+2-1
=11+11+10-9+8-7-6+5-4+3+2-1
= 22 + 1 + 1 - 11 - 7 + 1
= 23 +1 -11-7+1
= 24 -11-7+1
= 13-8
= 5
tính tổng sau
a, S=1.2+2.3+3.4+....+99.100
b, S=12+22+32+...+1002
tính tổng : 1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+4...+100)
1.2+2.3+3.4+...+99.100
ta có 1+(1+2)+(1+2+3)+...+(1+2+3+...+100)
=4+(1+3).3/2+9+(1+4).4/2+...+(1+100).100/2
=1/2(1.2+2.3+.....+100.101)
=>1/2.100.101.102
con cái dưới thì bằng 99.100.101
=>F=51/99
ngu rua mà ko biet lam
2/2*1+3/2*2+4/2*3+5/2*4+6/2*5+....101/2*100=1/2*(2*1+3*2+4*3+5*4+...100*101)=
Tính S= 1+1/2+1/4+1/8+1/16+1/32
Tính tổng A=1.2+2.3+3.4+...+98.99
BÀI 1:
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)
\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)
\(S=1+1-\frac{1}{8}\)
\(S=\frac{15}{8}\)
BÀI 2:
\(A=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)
\(3A=98.99.100\)
\(3A=970200\)
\(\Rightarrow A=970200:3\)
\(A=323400\)
CHÚC BN HỌC TỐT!!!
1/ Tập hợp A các số nguyên âm lớn hơn -100 là ?
2/Tính tổng S=1.2+2.3+3.4+.....+99.100 ta được kết quả S=?
1/ tap hop A co 99 phan tu {-1;-2;-3;......;-99}
2/ S=333300
S=1+2+2^2+2^3+2^4+...+2^100
S=1.2+2.3+3.4+4.5+...+99.100+100.101
Q=1^2+2^2+3^2+...+100^2+101^2
S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰
2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)
= 2¹⁰¹ - 1
------------
S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 - 1.2.3 + 2
3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102
= 100.101.102
S = 100 . 101 . 102 : 3
= 343400
------------
Q = 1² + 2² + 3² + ... + 100² + 101²
= 101.102.(2.101 + 1) : 6
= 348551
Tính tổng
S=1.2+2.3+3.4+4.5+...+99.100
S=1.2+2.3+...+(n-1).n. (n thuộc N sao)
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
ta xét
\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)
\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)
\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)
\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)
Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)