cho 2 số a , b thỏa mãn : 3b2-4a4=11ab
tính \(P=\frac{14a+10b}{29a-4b}\)
cho 2 số a ,b thỏa mãn : 3b2-4a2=11ab
tính P=\(\frac{14a+10b}{29a-4b}\)
b) giải phương trình : \(\left(8x+3\right)\left(\frac{5x+7}{2-7x}+1\right)=\left(x+5\right)\left(\frac{5x+7}{2-7x}+1\right)\)
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:591. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
Cho đa thức F ( x) = a\(x^2\)+ bx + c với các hệ số a, b, c thỏa mãn 14a - 4b + 5c =0
CMR : F(1) và F(2) không thể cùng âm
Cho ba số thực dương a,b,c thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 b - 6 c = 10 và a + c=2 . Tính giá trị biểu thức P = 3a + 2b + c khi Q = a 2 + b 2 + c 2 - 14 a - 8 b + 18 c đạt giá trị lớn nhất.
A. 10
B. -10
C. 12
D. -12
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Cho 2 số dương a, b thỏa mãn a + 4b = 1. Chứng minh rằng \(a^2+4b^2\ge\frac{1}{5}\)
Đặt \(T=a^2+4b^2\)(1)
Vì a+4b=1 => a=1-4b
Thế vào (1) ta được: \(T=\left(1-4b\right)^2+4b^2=20b^2-8b+1\)
<=> \(T=20\left(b^2-2\cdot\frac{1}{5}\cdot b+\frac{1}{25}\right)+\frac{1}{5}=20\left(b-\frac{1}{5}\right)^2+\frac{1}{5}\)
=> \(T\ge\frac{1}{5}\left(đpcm\right)\)
trả lời
anh ơi cái anyf dùng bất đẳng thức
(ax+by)^2<= (a^2+b^2)(x^2+y^2) cũng được nhỉ
cách này nhanh hơn đó ạ
hok tốt
Cho a,b là các số thực dương thỏa mãn a2 -2ab -3b2 ≥ 0. Tìm giá trị nhỏ nhất P =\(\dfrac{4a^2+b^2}{ab}\)
Lời giải:
$a^2-2ab-3b^2\geq 0$
$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$
$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$
$\Leftrightarrow (a+b)(a-3b)\geq 0$
$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)
$\Leftrightarrow a\geq 3b$
Xét hiệu:
$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$
$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$
$\Rightarrow P\geq \frac{37}{3}$
Vậy $P_{\min}=\frac{37}{3}$
Chứng minh rằng nếu a,b,c > 0 thoả mãn a+b+c = 3 thì ab+a 3b2+10b+3 + bc+b 3c2+10c+3 + ca+c 3a2+10a+3 ≥
3 8
Tìm số nguyên dương a,b thỏa mãn : a2 = 3b2
\(a^2=3b^2\)
Vì \(a^2;b^2\) là số chính phương
\(\Rightarrow a^2⋮̸3b^2\)
Nên không tồn tại a;b nguyên dương thỏa đẳng thức \(a^2=3b^2\)
Phần lỗi màu đỏ là a2 không thể chia cho 3 có thương là b2 là số chính phương
cho a,b >0 thỏa mãn:a2+2b=4b2-a
tính giá trị biểu thức M=a2+5a+4b2-10b-4ab+2018